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UNIT – I : NATURE AND SCOPE OF ECONOMETRICS

Lesson 1.1 – Meaning, Aims, and Methodology of Econometrics

Structure

1.1.1	 Meaning of Econometrics

1.1.2	 Relationship between Statistics, Mathematics, and Economics

1.1.3	 Economic and Econometric Models

1.1.4	 Aims and Methodology of Econometrics

1.1.5	 Summary

1.1.6	 Keywords

1.1.7	 Self-assessment Questions

1.1.8	 References

1.1.1  Meaning of Econometrics

Econometrics is the branch of economics that aims to give empirical content to economic 
relations. More precisely, it is the quantitative analysis of actual economic phenomena based 
on the concurrent development of theory and observation, related by appropriate methods 
of inference.

Econometrics is the science of using data to test and measure economic theories. It 
combines economics, statistics, and mathematics to analyze real-world data and see if the 
theories hold up. Economists come up with ideas about how the economy works (theories). 
Econometricians then translate those ideas into mathematical models (like equations). 
They gather real-world data (like unemployment rates or stock prices). Using statistical 
tools, they run experiments with the data and the models. Based on the results, they can 
confirm, refine, or even reject the original theories.

Econometrics allows economists to test the predictions of economic theories against 
observed data. This is crucial for understanding whether a theory holds up in real life. Many 
economic theories predict relationships between variables (like income and consumption, 
or education and earnings). Econometrics provides tools to estimate the strength and 
form of these relationships. By understanding and quantifying economic relationships, 
econometrics can be used to make forecasts about future economic conditions or the 
outcomes of economic policies. Econometrics is often used to evaluate the effects of policy 
changes or to simulate the impact of potential policies before they are implemented.

1
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1.1.2 � Relationship Between Statistics, Mathematics, and Economics

Econometrics sits at the intersection of economics, mathematics, and 
statistics. It is essentially a tool that uses mathematical models to turn theories 
from economics into something that can be tested against real-world data 
using statistical methods. It draws from statistics and mathematics to provide 
a rigorous foundation for economic analysis. It is the conduit through which 
abstract economic theories are translated into practical tools for understanding, 
modeling, and predicting economic phenomena.

The relationship between statistics, mathematics, and economics is 
both intricate and symbiotic, especially when viewed through the lens 
of econometrics. Each discipline plays a crucial role in this collaborative 
endeavor, offering distinct yet intricately linked tools for empirical analysis.

At its heart, econometrics relies on economic theories to form hypotheses. 
These theories might be about anything from the way consumers make 
purchasing decisions to how entire economies respond to changes in policy. 
Econometrics uses mathematical models to express economic theories. These 
models help in structuring our understanding of complex relationships in 
a clear and concise way. Econometrics employs statistical techniques to test 
hypotheses and estimate the relationships described by economic theories. 
Through statistics, econometricians can determine if the relationships the 
theories predict are supported by real-world data.

Mathematics serves as the bridge between theoretical models and empirical 
analysis. Economic theories are often translated into mathematical equations, 
allowing for precise formulations of relationships between economic variables. 
Mathematics provides the language and framework necessary for formulating 
economic theories and models. It introduces precision and facilitates the 
expression of complex ideas in a form that can be systematically analyzed. In 
econometrics, mathematics is used to:

 	 ➢ Model Economic Relationships: Mathematical equations 
and functions are used to represent theories about economic 
relationships.

 	 ➢ Optimization: It is essential in solving problems related to maximization 
or minimization, such as cost minimization or profit maximization.

 	 ➢ Structuring Problems: Mathematics helps in structuring 
economic problems in a formal way, allowing for clear and concise 
representation of constraints, assumptions, and expected outcomes.
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Statistics forms the bedrock of econometrics, providing the arsenal of 
methodologies for drawing meaningful inferences from data. It is crucial 
for testing hypotheses and estimating the relationships posited by economic 
theories. Without statistics, econometrics would lack the tools necessary to 
infer relationships from data. In econometrics, statistics is used to:

 	 ➢ Data Analysis: It helps in summarizing and extracting useful 
information from raw economic data.

 	 ➢ Hypothesis Testing: It provides methods for testing whether the 
observed data supports or refutes a given economic theory.

 	 ➢ Estimation: Statistical techniques such as regression analysis are 
used to estimate the parameters of economic models.

Economics provides the theories and concepts that econometrics aims 
to test and quantify. It is the substantive content that econometrics seeks 
to analyze using mathematics and statistics. In econometrics, economics 
provides:

 	 ➢ Theoretical Framework: The economic theories that are translated 
into mathematical models.

 	 ➢ Context for Analysis: It determines the variables that should be 
included in a model and the expected sign and size of relationships 
between variables.

 	 ➢ Interpretation: The economic theory helps in interpreting the 
results of statistical analysis, ensuring that they make sense within 
the broader economic context.

The interconnections between the three disciplines can be summarized as 
follows:

 	 ➢ From Theory to Data: Economics posits a theory, mathematics 
allows us to express this theory as a model, and statistics provides 
the tools to confront this model with data.

 	 ➢ From Data to Theory: Statistical results inform the refinement of 
economic theories, and mathematics helps to refine the models to 
better capture the complexities of economic behavior.

The triumvirate of statistics, mathematics, and economics, when 
combined in econometrics, allows for a systematic and empirical 
investigation of economic realities.DDE, P
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1.1.3  Economic and Econometric Models

In economics, models play a crucial role in understanding complex 
phenomena. They act as simplified representations of reality, allowing us to 
analyze and predict economic behavior. However, it is crucial to distinguish 
between two distinct types: economic models and econometric models. 
Economic models and econometric models are analytical frameworks that 
serve as tools to understand, interpret, and analyze economic phenomena 
and policy effects. Despite their interconnectedness, they serve distinct, 
yet complementary, roles within economic analysis.

Economic models are theoretical frameworks that describe the 
relationships between economic variables. They rely on assumptions 
about economic agents’ behavior, market structures, and institutional 
arrangements. These assumptions abstract from the complexities of the real 
world, allowing economists to see how changes in one part of the system 
might have intended or unintended consequences in another. Common 
examples include supply and demand models, general equilibrium models, 
and macroeconomic models.

Mathematics is a fundamental tool in economic modeling, providing 
a language through which complex ideas can be expressed with clarity and 
precision. Economic models can be prescriptive, suggesting how things 
should work under certain conditions (normative models), or descriptive, 
representing how things actually work in reality (positive models).

Econometric models, on the other hand, are statistical representations 
of economic relationships. They translate the theoretical framework of 
economic models into mathematical equations that can be estimated and 
tested using real-world data. This allows econometricians to assess the 
empirical validity of economic theories and quantify the relationships 
between variables. Examples include linear regression models, time series 
models, and panel data models.

Econometric models are statistical models that economists use to test 
hypotheses and forecast future economic activity. An econometric model 
is essentially the quantified version of an economic model, constructed 
with the intent of empirical testing. It involves specification, where the 
form of the econometric model is defined based on the theoretical model, 
estimation, where statistical methods are used to estimate the parameters 
of the econometric model, and validation, where the model is tested for 
its predictive power and its ability to explain the data. These models often 
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employ regression analysis, which is used to understand the relationship 
between a dependent variable and one or more independent variables, 
while accounting for randomness in the data.

The relationship between economic and econometric models is 
inherently cyclical and iterative. Economic models provide the theoretical 
basis for econometric models. They propose relationships that should be 
observed if the theory is correct. Econometric models then take these 
theoretical relationships and confront them with actual data to:

 	 ➢ Test Economic Theories: By estimating the parameters of the 
econometric model, researchers can test whether the relationships 
posited by economic theories hold in the real world.

 	 ➢ Make Predictions: Once validated, econometric models can be 
used to make predictions about the economy, which is particularly 
useful for policy analysis and forecasting.

 	 ➢ Refine Theories: The outcomes of econometric analyses can lead 
to the refinement of economic models. If real-world data do not 
support the theoretical model, economists may revise their models 
or question the underlying assumptions.

Here’s an analogy: imagine an architect designing a building. The 
economic model is like the initial sketch, outlining the overall structure 
and function. The econometric model is like the detailed blueprint, 
incorporating specific measurements and materials based on real-world 
constraints. Just as the architect relies on both sketches and blueprints, 
economists rely on both economic and econometric models for a 
comprehensive understanding.

In essence, economic models hypothesize how the economy should 
work, while econometric models verify how the economy does work. 
Econometric models are the bridge between theory and data, allowing 
economists to go beyond abstract thought and to engage in empirical 
investigation, thereby validating and enhancing the understanding 
provided by economic models. By working together, they enable us to not 
only understand the “what” of economic phenomena but also quantify the 
“how much” and “how often,” leading to deeper insights and informed 
decision-making.DDE, P
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1.1.4  Aims and Methodology of Econometrics

Econometrics, as a discipline, has a dual objective within the realm 
of economics: to provide quantitative content to theoretical relationships 
and to test economic theories against observed data. The methodology 
of econometrics is characterized by the application of statistical tools to 
economic data to lend empirical support to models and to forecast future 
trends.

Aims of Econometrics

Econometrics aims to test and refine economic theories so as to guide 
policy formulation and decision making. It has following objectives:

 	 ➢ Estimation of Economic Relationships: Econometrics seeks to 
estimate the parameters that define economic relationships. For 
instance, it aims to quantify the sensitivity of demand to changes 
in price or the effect of education on wages. These estimates allow 
economists to understand the magnitude and significance of 
relationships between economic variables.

 	 ➢ Testing of Economic Theories: A central aim of econometrics is to 
test hypotheses derived from economic theories. Econometricians 
employ empirical data to confirm or refute theoretical propositions, 
thereby providing a reality check for economic models.

 	 ➢ Forecasting Economic Activity: Econometrics is used to predict 
future economic outcomes based on the established relationships 
between variables. These forecasts are integral to decision-making 
by businesses, policymakers, and individuals.

 	 ➢ Policy Analysis: Econometric models are tools for policy analysis, 
allowing economists to simulate the effects of various policy 
options and to evaluate the impact of past policies. This aim ties 
closely with the concept of causal inference in econometrics, which 
is concerned with determining cause-and-effect relationships.

Econometrics empowers us to test and refine our understanding of 
economic phenomena, guiding policy decisions and shaping a more 
informed economic future.

Methodology of Econometrics

The methodology of econometrics encompasses several sequential 
steps:
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 	 ➢ Model Specification: The process begins with the specification 
of an econometric model that is derived from economic theory. 
This involves choosing the appropriate variables and functional 
forms that are believed to best represent the economic reality being 
studied.

 	 ➢ Data Collection: Acquiring data that are relevant to the specified 
model is the next step. Econometricians may use cross-sectional, 
time-series, or panel data, depending on the nature of the economic 
phenomenon under investigation.

 	 ➢ Estimation of Parameters: Using statistical methods, econometricians 
estimate the parameters of the econometric model. Ordinary Least 
Squares (OLS) is the most common estimation technique for linear 
regression models, but there are many other methods, such as Maximum 
Likelihood Estimation (MLE), Generalized Method of Moments 
(GMM), and Instrumental Variables (IV) estimation, that are used when 
the OLS assumptions do not hold or when the model is not linear.

 	 ➢ Hypothesis Testing: After estimating the parameters, 
econometricians test various hypotheses related to the economic 
theory. This typically involves tests for statistical significance such 
as t-tests, F-tests, and chi-square tests.

 	 ➢ Model Diagnostics: Econometricians conduct diagnostic checks to 
assess the validity of the model. These checks may include tests for 
heteroskedasticity, autocorrelation, multicollinearity, and model 
misspecification.

 	 ➢ Model Refinement: Based on the outcomes of hypothesis testing 
and diagnostic checks, the econometric model may be refined to 
improve its accuracy and explanatory power.

 	 ➢ Forecasting and Policy Simulation: With a validated model, 
econometricians can make forecasts about future economic events 
or simulate the impact of potential economic policies.

 	 ➢ Communication of Results: The final step involves the 
interpretation and communication of the results in a manner that is 
understandable and useful for policymakers, economists, and other 
stakeholders.

The aims and methodology of econometrics are deeply intertwined. 
The discipline aims to validate and quantify economic theories using 
real-world data, which in turn informs economic decision-making and 
policy development. For example, suppose we are curious about the effect 
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of education on earnings. An economic theory might suggest that more 
education leads to higher earnings. To explore this, we would:

 	 ➢ Develop a Model: Create a mathematical representation of the 
theory, identifying the key variables (in this case, education and 
earnings) and how they are believed to interact.

 	 ➢ Collect Data: Gather data on individuals’ education levels and their 
earnings.

 	 ➢ Statistical Analysis: Use statistical methods to analyze the data, 
testing whether the relationship between education and earnings 
is as the theory predicts, and if so, how strong that relationship is.

 	 ➢ Interpret Results: Assess the findings to see if they support the theory 
and consider what they might mean for policy or further research.

The methodology of econometrics, rooted in statistical analysis, is 
rigorous and iterative, ensuring that economic models are continually 
tested and refined against empirical evidence. By combining theory with 
data, econometrics provides insights into complex questions that matter 
for everything from individual choices to global economic policies.

1.1.5  Summary

Econometrics stands as the branch of economics that endows empirical 
significance to economic relations. It is defined by the quantitative 
dissection of genuine economic phenomena, an endeavor that marries 
theory with observation, all bound together through sound inferential 
methods. The discipline is tasked with estimating economic relationships, 
rigorously testing economic theories, forecasting economic behaviors, and 
evaluating as well as suggesting economic policies.

In the practice of econometrics, economic theories are not merely 
postulated but are transformed into mathematical models. These models 
are then populated with real-world data to assess whether the proposed 
theories withstand empirical scrutiny. The exercise involves using statistical 
instruments to probe and, where possible, predict economic tendencies and 
the consequences of policy measures. Through this process, theories can be 
either corroborated, fine-tuned, or contradicted by the collected data.

The interplay between statistics, mathematics, and economics in 
econometrics is intricate and mutually reinforcing. Mathematics serves as 
the scaffolding that allows economic theories to be structured into precise 
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mathematical models. These models are crucial for articulating complex 
economic relationships and solving problems related to optimization. 
Statistics underpins the endeavor, offering methodologies essential for 
extracting insights from data, testing hypotheses, and estimating the 
parameters that the mathematical models are based on. Economics, for its 
part, supplies the substantive theories and the contextual framework that 
guide the creation of econometric models and aid in the interpretation of 
statistical results.

The interconnection between these three fields is characterized by a 
dynamic flow from theory to data and back. Economic theories propose what 
relationships might exist, mathematics provides the means to express these 
relationships in a structured form, and statistics offers the tools to validate these 
theories against real data. When data speaks back to theory, it can lead to a 
refinement of the original economic propositions, ensuring that the models 
evolve to capture the complexities of economic behavior more accurately.

In distinguishing between economic and econometric models, one 
must appreciate that while the former are theoretical constructs that 
delineate the relationships between various economic variables based 
on certain assumptions, the latter are the statistical incarnations of these 
relationships. Econometric models translate theoretical frameworks into 
quantifiable equations that can be empirically tested with data. This 
allows for the assessment of the validity of economic theories and the 
quantification of economic interactions.

The methodology of econometrics is a disciplined process that starts 
with the specification of a model rooted in economic theory. It progresses 
with the collection of relevant data, followed by the statistical estimation 
of the model’s parameters using a variety of techniques including 
Ordinary Least Squares and Maximum Likelihood Estimation. The model 
is then subjected to rigorous hypothesis testing, and its validity is gauged 
through diagnostic checks for potential issues such as heteroskedasticity 
and autocorrelation. Based on these evaluations, the model may undergo 
refinement to enhance its accuracy and explanatory power. With a model 
that withstands these tests, economists can forecast future economic 
events and simulate the impact of potential policies. The culmination of 
the process is the interpretation and communication of the results, which 
must be conveyed in a manner that informs policy decisions and furthers 
economic research.
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1.1.6  Keywords

Causal Inference: The determination of cause-and-effect relationships 
within econometrics. This aspect is crucial for policy analysis, as it 
helps economists simulate the effects of various policy options and 
evaluate the impact of past policies using econometric models.

Econometrics: A branch of economics that applies statistical methods 
to economic data to empirically validate and quantify economic 
relationships. It integrates economics, mathematics, and statistics to 
test economic theories against real-world data and to estimate the 
strength and form of economic relationships.

Empirical Analysis: The process of using observed and collected 
data to test economic theories and hypotheses. In econometrics, this 
involves the use of statistical techniques to analyze data and evaluate 
the validity of economic models.

Empirical Grounding: The act of providing evidence based on real-
world observations and data, as opposed to theoretical assumptions 
alone.

Heterogeneous Effects: The understanding that economic theories 
and policies can have different impacts on different groups or 
individuals within the economy.

Mathematical Models: Representations of economic theories in 
the form of mathematical equations. These models are used in 
econometrics to structure and formalize economic relationships, 
allowing for precise and systematic analysis.

Policy Simulation: The use of econometric models to predict 
the potential outcomes of different policy options before they are 
implemented.

Quantifiable Relationships: Economic connections that can be 
expressed as numerical values or formulas, allowing for precise 
measurement and analysis.

Regression Analysis: A statistical method used in econometrics 
to estimate the relationships between a dependent variable and one 
or more independent variables. It is commonly employed to test 
hypotheses and measure the impact of different factors on economic 
outcomes.
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Statistical Validation: The process of using statistical methods to 
assess the accuracy and reliability of economic models, ensuring their 
conclusions are not due to chance.

1.1.7  Self-assessment Questions

1.	 What is the main objective of econometrics?

2.	 Explain the difference between economic models and econometric 
models.

3.	 How are statistics used in the field of econometrics?

4.	 What are some of the challenges involved in interpreting econometric 
results?

5.	 Can you think of an example where econometrics has been used to 
test an economic theory?

6.	 How could econometrics be used to evaluate the effectiveness of a 
government policy?

7.	 What are some of the limitations of using econometrics to make 
predictions about the future?

8.	 Imagine you are an economist studying the relationship between 
income and education. How might you use econometrics to analyze 
this relationship?

9.	 Why is it important to be critical of the assumptions made in 
econometric models?

10.	 Do you think econometrics can ever provide definitive answers to 
economic questions? Why or why not?

1.1.8  References

1.	 Introductory Econometrics: A Modern Approach by Jeffrey M. 
Wooldridge: This textbook provides a comprehensive introduction to 
econometrics, covering both theory and application. It’s considered 
accessible for those with limited mathematical background.

2.	 Econometrics by Bruce D. Hansen: This textbook offers a more 
concise and theoretical treatment of econometrics, suitable for 
undergraduates with a strong grasp of statistics and mathematics.

3.	 Using Econometrics: A Gentle Introduction by A. Colin Cameron 
and Pravin K. Trivedi: This textbook focuses on the practical 
application of econometrics, presenting various econometric 
techniques through real-world examples.
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4.	 Mostly Harmless Econometrics: An Introduction in Plain English 
by Joshua Angrist and Jörn-Steffen Pischke: This book uses humor 
and real-world examples to explain complex econometric concepts, 
making it a good choice for those seeking a more engaging learning 
experience.

5.	 The Econometrics of Macroeconomic Policy by Jordi Galí: 
This book delves into the specific application of econometrics in 
macroeconomic analysis, requiring a strong understanding of both 
statistics and economic theory.
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Lesson 1.2 – Regression and Econometric Analysis

Structure

1.2.1	 Historical Origin of the term Regression

1.2.2	 Modern Interpretation of the term Regression

1.2.3	 Statistical versus Deterministic Relationship

1.2.4	 Regression versus Causation

1.2.5	 Regression versus Correlation

1.2.6	 Terminology and Notation

1.2.7	 The Nature and Sources of Data for Econometric Analysis

1.2.8	 Summary

1.2.9	 Keywords

1.2.10	 Self-assessment Questions

1.2.11	 References

1.2.1  Historical Origin of the Term Regression

Regression, in statistical terms, is a methodological framework 
employed to discern the relationship between a dependent variable and 
one or more independent variables. A cornerstone of statistical analyses, it 
boasts a rich history interwoven with biological observations, astronomical 
calculations, and the search for meaning in diverse datasets. The term 
“regression” first emerged in the 19th century through the work of Sir 
Francis Galton, a polymath fascinated by heredity and biometrics. While 
studying pea plant heights, he noticed a curious phenomenon: the heights 
of offspring from tall parents tended to be closer to the average population 
height than their parents, exhibiting a “regression” towards the mean. He 
termed this phenomenon “regression towards mediocrity,” later shortened 
to “regression.” This observation led him to define “regression” as the 
tendency of offspring to be less extreme than their parents.

While Galton coined the term, the underlying mathematics had already 
established roots. In 1805, Adrien-Marie Legendre and Carl Friedrich 
Gauss, independently, published the method of least squares. This method 
sought to find a line that best fit a set of data points by minimizing the 
sum of the squared distances between the data points and the line. This 
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technique, initially used for analyzing planetary movements, proved 
fundamental for regression analysis. Adolphe Quetelet (1846) popularized 
and applied least squares extensively in social sciences, paving the way 
for broader statistical applications. The 20th century saw substantial 
advancements in formalizing regression theory. Karl Pearson (1894) built 
upon Galton’s work, introducing the correlation coefficient to quantify the 
strength of linear relationships. This coefficient measures the strength and 
direction of the linear relationship between two variables, enabling more 
nuanced analyses beyond simple regression to the mean. This paved the 
way for multiple regression, allowing analysts to consider the influence of 
multiple independent variables on a dependent variable. Ronald Aylmer 
Fisher (1925) laid the groundwork for modern regression analysis with his 
seminal work on analysis of variance (ANOVA) and maximum likelihood 
estimation.

Regression analysis found applications in diverse fields, including 
econometrics--estimating relationships between economic variables like 
income, prices, and demand, social sciences--analyzing relationships 
between social factors like education, income, and crime rates, and 
natural sciences--modeling relationships between physical phenomena 
like temperature, pressure, and chemical reactions. Econometrics, in 
particular, embraced regression with enthusiasm. Ragnar Frisch (1934) 
developed the Cowles Commission methodology, establishing regression 
as a core tool for economic modeling and forecasting. Trygve Haavelmo 
(1944) introduced the concept of simultaneous equations, addressing 
the issue of interdependent variables in economic systems. Furthermore, 
econometrics extensively utilizes regression analysis to build econometric 
models that simulate and forecast economic behavior. These models play a 
crucial role in policymaking and understanding economic trends.

The post-war era witnessed a surge in computing power, making 
regression accessible to a wider audience. With the advent of powerful 
computers and advanced statistical software, regression analysis has 
become even more sophisticated. Software packages like SAS and SPSS 
facilitated ease of use, propelling regression into diverse fields, from finance 
and marketing to medicine and social sciences. Advanced techniques like 
logistic regression and non-linear regression emerged, providing greater 
flexibility and handling complex data structures and relationships.

The historical evolution of regression has also involved the development 
of robust statistical techniques. These techniques are designed to be 
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less sensitive to outliers and other forms of data that do not meet the 
assumptions of classical regression models. The use of bootstrapping and 
other resampling techniques has also improved the estimation of regression 
models by allowing for the estimation of the sampling distribution of 
almost any statistic.

The expansion of regression analysis over time has been characterized 
by both broadening the types of relationships it can model and deepening 
the theoretical underpinnings of these models. This has entailed not only 
advancements in the types of regression models available but also improvements 
in the underlying estimation techniques and diagnostic measures.

From the mid-20th century onward, the development of regression models 
has been influenced by the rise of computational power and the advent of new 
statistical theories. The proliferation of computers and statistical software in 
the latter half of the 20th century precipitated the development of numerous 
types of regression techniques beyond the basic linear model. The introduction 
of Generalized Linear Models (GLMs) by Nelder and Wedderburn in 1972 
was a significant milestone. GLMs extend the linear model framework to 
allow for response variables that have error distribution models other than a 
normal distribution. These include, but are not limited to, logistic regression 
for binary outcomes, Poisson regression for count data, and Cox regression for 
survival analysis. These techniques are widely used in fields such as medicine, 
biology, and economics.

The expansion of regression methods also included nonparametric 
and robust regression techniques that relax some of the more restrictive 
assumptions of traditional parametric regression models, thereby 
providing greater flexibility in analyzing data that do not conform to 
normal distribution or that exhibit heteroskedasticity or non-linearity. 
These techniques are designed to be less sensitive to outliers and other 
forms of data that do not meet the assumptions of classical regression 
models. The use of bootstrapping and other resampling techniques has 
also improved the estimation of regression models by allowing for the 
estimation of the sampling distribution of almost any statistic.

A substantial advancement in the field was the development of the 
Generalized Additive Models (GAMs) by Hastie and Tibshirani in the 
1980s, allowing for the modeling of non-linear relationships between 
the dependent and independent variables. GAMs can include both 
linear and non-linear terms and are particularly useful in situations 
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where the relationship between the variables is not well described by a 
straight line.

Furthermore, the latter part of the 20th century and the early 21st century 
have seen an explosion in the development of techniques for dealing with 
high-dimensional data—data that have a large number of variables relative 
to the number of observations. Techniques such as ridge regression, lasso 
regression, and elastic net were developed to handle multicollinearity and 
overfitting, common problems when dealing with high-dimensional data 
sets.

The concept of regression has also been extended to the field of machine 
learning. Techniques like support vector machines, random forests, and 
neural networks can be seen as extensions of regression. They are designed 
to capture complex patterns in the data, but at their core, they also seek to 
predict a dependent variable from a set of independent variables.

Today, regression analysis remains a vital tool across diverse fields, 
including finance, medicine, social sciences, and natural sciences. With the 
increasing availability of data and computational power, new regression 
techniques and applications are constantly emerging. Machine learning 
algorithms, for instance, often incorporate regression models as building 
blocks, further expanding the reach and impact of this powerful analytical 
framework.

1.2.2  Modern Interpretation of the Term Regression

The term “regression” has transcended its original biological 
connotations to denote a versatile, methodological tool used for prediction 
and inference regarding relationships among variables. It goes beyond 
simply finding the “best-fitting line” to exploring the mechanisms and 
dynamics driving the relationship. Linear models, though still widely 
used, are seen as a specific case within a broader spectrum. Non-linear, 
time-series, and other complex models are employed to better represent 
real-world phenomena.

Modern regression emphasizes constructing models that capture 
the relationship between variables based on underlying theoretical 
frameworks or empirical observations. It acknowledges the inherent 
uncertainty and potential biases in data and models. Statistical techniques 
like confidence intervals, hypothesis testing, and model selection aim 
to quantify and address these uncertainties, leading to more robust and 
reliable conclusions. Key features of modern regression are:
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 	 ➢ Wide range of models: Linear, non-linear, multivariate, time series, 
and other specialized models are available.

 	 ➢ Focus on causality: While not always possible, modern regression 
techniques attempt to infer causal relationships between variables.

 	 ➢ Robustness and diagnostics: Techniques exist to address issues 
like outliers, multicollinearity, and heteroscedasticity, ensuring 
model reliability.

 	 ➢ Computational efficiency: With advancements in computing 
power, regression analysis can handle large datasets and complex 
models.

The modern interpretation of regression signifies its transformation 
from a biological concept to a powerful statistical and econometric tool. 
It allows us to model, quantify, and understand relationships between 
variables in diverse fields, enabling data-driven decision-making and 
uncovering valuable insights. Modern interpretations emphasize different 
aspects of this process:

1.	 Prediction: In contemporary usage, regression is primarily associated 
with the prediction of values of a dependent variable based on one or 
more independent variables. For example, in econometrics, regression 
might be used to predict consumer spending based on income and 
wealth levels. The coefficients obtained from regression models 
quantify the expected change in the dependent variable for a one-unit 
change in an independent variable, holding other variables constant.

2.	 Inference: Apart from prediction, regression is used for inference about 
the relationships between variables. This means testing hypotheses 
about these relationships, such as whether they are positive, negative, 
or non-existent. In econometrics, such inferences might involve 
understanding the impact of a policy change on economic growth, or 
the sensitivity of investment to interest rate changes.

3.	 Estimating Relationships: Regression models are used to estimate 
the functional form of relationships between variables. For instance, 
in econometrics, we might use regression to estimate the elasticity 
of demand for a product, or the marginal propensity to consume 
out of income.

4.	 Causal Analysis: Modern regression analysis, especially within 
econometrics, is often concerned with identifying causal relationships. 
This involves distinguishing correlation from causation and employing 
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techniques such as instrumental variables, difference-in-differences, or 
regression discontinuity designs to infer causality.

In the context of statistical analysis, especially econometrics, the 
modern interpretation of regression focuses on its role as a fundamental 
tool for quantitative analysis. It features are:

1.	 Sophistication in Techniques: Modern regression includes a 
variety of sophisticated techniques to handle diverse data structures 
and complexities. These range from simple linear regression to 
multiple regression, logistic regression for binary outcomes, Poisson 
regression for count data, and survival models for time-to-event 
data, among others.

2.	 Accounting for Non-Linearity and Interaction: Contemporary 
regression analysis can capture non-linear relationships through 
polynomial regression or the use of splines. It also accounts for 
interactions between variables to understand how the relationship 
between two variables may change at different levels of a third 
variable.

3.	 Robust and Resistant Methods: Modern regression methods 
are robust to violations of classical assumptions like normality of 
errors or homoscedasticity. Techniques such as robust regression 
are employed to provide reliable results even when outliers or other 
anomalies are present.

4.	  Handling High-Dimensional Data: With the advent of big data, 
regression techniques have adapted to handle high-dimensional 
datasets. Regularization methods like ridge regression, lasso, and 
elastic net have become important tools for variable selection and 
preventing overfitting.

5.	 Model Selection and Validation: Contemporary practice in 
regression involves rigorous model selection and validation 
techniques. Cross-validation, information criteria like AIC and 
BIC, and other methods are used to select the best model from a set 
of candidates and to assess the model’s predictive power.

6.	 Software and Computation: Modern regression analysis is 
facilitated by sophisticated software that can handle complex models 
and large datasets. Statistical software packages now offer extensive 
libraries for regression analysis, making advanced techniques 
accessible to a wide range of users.
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7.	 Machine Learning and Artificial Intelligence: Regression concepts 
have been extended into the realms of machine learning and artificial 
intelligence. Techniques such as regression trees, random forests, and 
neural networks represent an advanced form of regression used for 
both classification and prediction in complex datasets.

Modern interpretation of regression serves as the backbone for 
empirical research, guiding both theoretical exploration and practical policy 
implications. It is not merely a statistical technique but a comprehensive 
approach to understanding and interpreting the world through data. The 
modern view of regression is one of a dynamic, evolving discipline, integral 
to the field of econometrics and its application to economic data.

Today, regression analysis is an indispensable tool in the data scientist’s 
toolkit. It continues to grow and adapt as new challenges in data analysis 
arise and exemplifies the dynamic nature of the field and its ability to 
adapt to the ever-changing landscape of data analysis. As we collect more 
data and develop new computational tools, it is likely that regression 
analysis will continue to evolve, providing ever more powerful tools for 
understanding the world around us.

1.2.3  Statistical Versus Deterministic Relationship

The world around us is full of connections and influences. Understanding 
these relationships is crucial in various fields, from science to economics. 
Two fundamental types of relationships govern these connections: 
statistical and deterministic. While both reveal linkages between variables, 
they differ significantly in their nature and predictability.

A statistical relationship is often probabilistic, meaning that it is based 
on tendencies or patterns observed within data rather than certainties. 
For example, a statistical relationship might show that taller people tend 
to have larger shoe sizes. This does not mean that every tall person has 
large feet, but there is a trend or tendency that can be observed in a 
population. Consider another example, the relationship between smoking 
and lung cancer. While smoking increases the risk of lung cancer, it does 
not guarantee it. Some smokers never develop the disease, while non-
smokers sometimes do. This is because statistical relationships involve 
probabilities and trends, rather than perfect predictions. Knowing one 
variable (smoking) gives you a likelihood, not a certainty, of the other 
(lung cancer).
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Statistical relationships are quantified using correlation coefficients 
or regression analysis, which measure the strength and direction of the 
association between variables. In the case of regression, the relationship 
also involves predicting the value of one variable based on the value of 
another. Statistical relationships are characterized by:

 	 ➢ Probabilistic nature: The influence of one variable on another is 
expressed through probabilities or tendencies.

 	 ➢ Presence of randomness: Chance or unknown factors play a role 
in the relationship.

 	 ➢ Correlational, not causal: The observed connection doesn’t 
necessarily imply causation.

Statistical relationship suggests that a change in one variable is 
associated with a change in another, but this association is not necessarily 
one of direct causation and may include randomness or variability.

A deterministic relationship, on the other hand, is one where a certain 
input will always produce the same output, without randomness or 
variation involved. This type of relationship can be described by an exact 
mathematical equation, and given the same starting conditions, the outcome 
will always be the same. An example of a deterministic relationship is the 
calculation of the circumference of a circle from its radius. The equation  
(where  is the circumference and  is the radius) will always yield the exact 
circumference if the radius is known. There is no variability or uncertainty 
in this calculation; it is a fixed, predictable relationship.

In a deterministic relationship, knowing the value of one variable allows 
you to exactly calculate the value of the other. This perfect predictability 
stems from the underlying physical or mathematical laws governing the 
relationship. For instance, knowing the mass and acceleration of an object 
lets you determine its exact velocity using the formula . Similarly, in 
Ohm’s Law, measuring the voltage across a resistor allows you to precisely 
calculate the current flowing through it. Deterministic relationships are 
often characterized by:

 	 ➢ Perfect predictability: Knowing one variable guarantees the exact 
value of the other.

 	 ➢ Absence of randomness: No element of chance influences the 
relationship.
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 	 ➢ Clear functional dependence: A precise formula or equation 
describes the relationship.

In summary, while statistical relationships account for trends, 
probabilities, and the influence of various factors, deterministic 
relationships rely on fixed, predictable formulas. The key differences 
between the two can be summarized as:

Feature
Deterministic 
Relationship

Statistical Relationship

Prediction Exact and guaranteed Estimate based on probabilities

Randomness
None; exact 
relationships

Chance and uncertainty 
play significant role in the 
relationship between variables

Causality
Relationships imply 
causation

Relationships only show 
correlation; causation needs 
to be ascertained through 
statistical tests

Examples
Laws of Physics; 
Engineering 
calculations

Exam scores and study hours; 
Economic trends

Understanding the difference between these relationships is crucial 
for interpreting data and drawing accurate conclusions. Deterministic 
relationships allow for precise predictions, while statistical relationships 
provide insights into trends and probabilities. The world is often complex 
and nuanced, and both types of relationships play vital roles in our 
understanding of it.

1.2.4  Regression Versus Causation

Understanding the distinction between regression and causation is 
crucial in the empirical examination of data across various disciplines. 
Conflating correlation, revealed by regression, with causation can lead to 
pitfall in analysis and interpretation of results. While regression can unveil 
statistical associations, the leap to inferring causal connections requires an 
extra layer of scrutiny.
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Regression analysis, in its various forms, determines the degree 
to which a dependent variable changes in response to an independent 
variable. Specifically, it establishes a statistical association quantifying 
the dependent variable’s (Y) change in response to variations in the 
independent variable(s) (X). However, the fundamental premise of 
regression is correlation, which measures the strength and direction of a 
relationship between variables, without necessarily implying a cause-and-
effect relationship. For instance, a regression analysis could reveal how 
sales might vary with changes in advertising expenditure. This association 
is expressed through a regression line or equation, capturing the trend but 
not necessarily the underlying mechanism.

The crux of the issue lies in the inherent inability of regression to 
establish causality. While a strong association between variables might 
exist, it is crucial to remember that other factors, unaccounted for in the 
model, could be the true drivers of the observed relationship. Consider 
the classic example of ice cream sales and drowning deaths. Regression 
might show a positive correlation, but the true cause of drownings likely 
lies in factors like warmer weather, increased pool usage, and not the 
consumption of ice cream.

Several factors can confound the causal interpretation of regression 
results. Reverse causality occurs when the dependent variable, instead, 
influences the independent variable. For instance, studying the link 
between stress and smoking might reveal a positive association, but it 
could be that individuals experiencing stress turn to smoking as a coping 
mechanism, reversing the causal direction. Omitted variable bias arises 
when pertinent variables influencing both X and Y are excluded from the 
analysis. This creates a misleading association between X and Y, attributing 
to X an effect truly stemming from the omitted variable.

The quintessence of regression lies in prediction. It establishes a 
model that, given the value of an independent variable, can predict the 
average outcome for the dependent variable. This predictive capability 
is immensely valuable in many fields, including economics, where it is 
employed to forecast variables like inflation, growth, or consumption based 
on observed historical data. However, the regression model is inherently 
limited to the data it analyzes and is influenced by the scope of variables 
included in the model.
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Correlation, as famously stated, does not imply causation. To move 
from correlation to causation, additional evidence is necessary. While 
regression alone cannot definitively establish causality, several approaches 
can strengthen causal inference. This evidence may come from randomized 
controlled trials, longitudinal studies, or the use of statistical techniques 
that can control for confounding variables, such as instrumental variable 
analysis. In econometrics, for instance, researchers often use such methods 
to infer causal relationships, such as the impact of education on earnings, 
by controlling for factors like ability, family background, and socio-
economic status.

The gold standard for establishing causation is the randomized 
controlled trial, where subjects are randomly assigned to different 
conditions. This randomization ensures that both known and unknown 
factors are equally distributed across groups, isolating the effect of the 
independent variable on the dependent variable. However, in many 
situations, such experiments are either unethical or impractical. Therefore, 
researchers rely on observational data, employing statistical models 
and methods to approximate experimental conditions and infer causal 
relationships.

Quasi-experimental designs mimic RCTs in spirit, leveraging naturally 
occurring situations that resemble random assignment. Observational 
studies can be enhanced by employing instrumental variables, which 
influence the independent variable but are not directly associated with 
the dependent variable, potentially mitigating confounding factors. 
Finally, statistical techniques like propensity score matching aim to create 
comparable groups between which causal effects can be estimated.

On the other hand, causation delves deeper into the dynamics between 
variables, asserting a cause-and-effect relationship. When one asserts that variable 
A causes variable B, it implies that changes in A directly bring about changes 
in B. Establishing causation requires rigorous experimental or observational 
methods that go beyond mere statistical associations. It often necessitates the 
control of extraneous variables that could influence the outcome, something 
that is typically addressed in experimental research designs but can be more 
challenging in observational studies.

The distinction between regression and causation is often blurred 
in empirical research. A strong correlation between two variables does 
not confirm that one variable causes the other. For example, ice cream 
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sales and drowning incidents may be strongly correlated because both are 
higher in the summer months, but it would be fallacious to assert that ice 
cream consumption causes drowning incidents. Mistaking correlation for 
causation can lead to erroneous interpretations and misguided policies. 
Recognizing the limitations of regression and employing appropriate 
techniques to strengthen causal inference are crucial for extracting 
meaningful insights from the intricate tapestry of data. Remember, 
correlation paints a suggestive picture, but only by carefully disentangling 
its threads can we unveil the true causal forces at play.

1.2.5  Regression Versus Correlation

In statistical analysis, the concepts of regression and correlation are 
both pivotal and frequently juxtaposed. While often used interchangeably, 
they possess distinct purposes and offer unique insights. Their distinction, 
while subtle, has profound implications for the interpretation of data and 
the inferences drawn from statistical models. This essay endeavors to 
dissect these concepts, demarcate their distinctions, and articulate their 
respective applications within the domain of statistical analysis.

Correlation quantifies the strength and direction of a linear relationship 
between two quantitative variables--extent to which two variables fluctuate 
together. It produces a single value, the coefficient of correlation, denoted 
as ‘r’, ranging from -1 (perfect negative correlation) to 1 (perfect positive 
correlation), with 0 indicating no linear association. Correlation paints 
a broad picture, revealing whether variables move together, but it does 
not explain how one influences the other. Correlation is symmetric: the 
correlation between X and Y is the same as the correlation between Y 
and X. It is agnostic to the causal direction of the relationship, making 
it susceptible to misinterpretations. It does not differentiate between 
dependent and independent variables, merely reflecting the degree to 
which they co-vary. For instance, a high correlation between ice cream 
consumption and drowning rates might not imply one causes the other; 
both could be influenced by a hotter summer season. Take another 
example, the correlation between study hours and exam scores. A strong 
positive correlation indicates that, on average, students who dedicate more 
time tend to score higher. However, correlation does not imply causation. 
Other factors, like innate ability, could also play a role, and the relationship 
might not be perfectly linear.
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Regression, on the other hand, goes beyond mere association. It 
models the relationship between a dependent variable (predicted) and one 
or more independent variables (predictors) using an equation. Returning 
to our study hours example, regression would provide an equation that 
estimates a student’s likely exam score based on their study hours. The 
simple regression equation is y = mx + c, where ‘y’ is the dependent 
variable, ‘x’ is the independent variable, ‘m’ represents the slope of the line 
(indicating the rate of change in y for a one-unit change in x), and ‘c’ is the 
y-intercept. This equation allows us to predict the value of the dependent 
variable for a given value of the independent variable(s). The key advantage 
of regression lies in its ability to make predictions for unobserved data 
points, too. By using the fitted equation, we can estimate the value of the 
dependent variable for new data points. This allows us to explore “what-
if ” scenarios and gain insights into how changes in one variable might 
affect the other.

While correlation is bidirectional, regression is unidirectional: it 
aims to predict the value of the dependent variable based on the known 
values of the independent variable(s). Regression provides a causal 
interpretation, assuming all relevant factors are included in the model. 
However, this interpretation relies on strong theoretical justification 
and careful control for confounding variables, which can be challenging 
to achieve. Furthermore, regression is sensitive to outliers and model 
misspecification, potentially leading to inaccurate predictions.

The coefficient of determination, denoted as R², emerges from 
regression analysis and provides a measure of how well observed outcomes 
are replicated by the model. It is the square of the correlation coefficient 
when dealing with simple linear regression and serves to indicate the 
proportion of the variance in the dependent variable that is predictable 
from the independent variable.

The choice between correlation and regression hinges on the research 
question. Correlation is ideal for exploratory analysis, identifying potential 
associations and generating hypotheses. It is also useful for comparing the 
strength of relationships across different groups or variables. Correlation 
is a prerequisite for linear regression; regression assumes that there 
is a correlation to be described and modeled. However, a significant 
correlation does not guarantee a meaningful or significant regression 
equation. Correlation does not account for causality or the dependency 
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between variables, whereas regression is explicitly designed to model the 
potential causality from the independent to the dependent variable.

Regression shines when we want to predict the dependent variable 
from the independent variable(s) or explain the mechanism underlying 
the relationship. It is crucial for testing of hypotheses and building 
models. Moreover, regression analysis allows for the inclusion of multiple 
independent variables, facilitating a multifaceted view of how several 
predictors jointly impact the dependent variable. There are various 
regression techniques, each with its own strengths and weaknesses. 
Linear regression, the most common, assumes a linear relationship 
between the variables. More complex models, like polynomial regression, 
can capture non-linear relationships, but require careful interpretation 
and consideration of overfitting. This is not the case with correlation, 
which is confined to the assessment of a single bivariate relationship 
at a time. However, the line between correlation and regression can 
blur. Correlation can be a steppingstone to regression, informing 
which variables to include in the model. Additionally, some regression 
techniques, like partial correlations, aim to isolate the relationship 
between two variables while controlling for others, mirroring the purpose 
of correlation analysis. 

In practical applications, correlation is often a preliminary step, 
providing a quick insight into the possibility of a relationship between 
variables. Regression is the subsequent, more sophisticated step that 
models this relationship and can be used to make predictions or inferences. 
For instance, in finance, correlation might be used to identify assets 
that move together for portfolio diversification, while regression could 
be employed to predict future asset prices based on various economic 
indicators. In econometrics, regression is indispensable. Econometricians 
routinely employ regression models to estimate the impact of policy 
changes or economic conditions on various socioeconomic outcomes. The 
interpretation of regression coefficients requires careful consideration of 
the underlying theory and the context of the data. The key differences 
between the two can be summarized as follows:
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Feature Correlation Regression

Directionality
Agnostic to the direction 
of influence between 
variables

Assumes a clear 
dependent and 
independent variable(s)

Prediction
Cannot predict the value 
of one variable based on 
another

Builds a predictive model

Model 
Building

Does not involve model 
building

Constructs an equation to 
represent the relationship

Causality Does not imply causation
Attempts to estimate 
the causal effect of one 
variable on another

Correlation and regression are not rivals, but complementary tools. 
Correlation offers a quick assessment of association. It is also useful when 
the relationship is not of primary interest, but understanding the presence 
or absence of an association is important whereas regression delves deeper 
into the model and predict. Regression, however, is the tool of choice when 
prediction or understanding the impact of one variable on another is the 
primary objective. It allows for more nuanced analysis, quantifying the 
strength of the relationship and enabling predictions for new data points.

Understanding their unique strengths and limitations is paramount for 
drawing accurate conclusions from data and making informed decisions 
based on statistical evidence. It is important to acknowledge the limitations 
inherent to both regression and correlation. Correlation’s inability to imply 
causation is well-noted; it is silent on whether one variable influences 
the other. Regression can suggest causality when used with a theoretical 
framework and empirical evidence that supports a causal link. However, 
without proper experimental or quasi-experimental design, regression too 
can fall prey to the fallacy of assuming causation from mere association.

While correlation and regression are interrelated, their roles in statistical 
analysis are distinct. Correlation provides a measure of the linear relationship 
between variables without implying causation, serving as a foundational stepping-
stone to more intricate analyses. Regression, on the other hand, builds on this 
foundation to model the direction and strength of relationships, allowing for 
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prediction and the possibility of causal inference within the constraints of the data 
and accompanying assumptions. Both are formidable tools in the statistician’s 
arsenal, each with its specific utility, limitations, and interpretive nuances. 
Understanding and applying these concepts with precision is paramount for the 
rigorous analysis and interpretation of quantitative data.

1.2.6  Terminology and Notation

Econometrics employs a specific language of symbols and terms. 
Understanding these is crucial for analysis and interpreting results. 
Following is the list of key terminologies and notations commonly used in 
elementary econometrics:

A.	 Population and Sample

a.	 Population (N): Refers to the entire group that one wants to 
draw conclusions about.

b.	 Sample (n): A subset of the population that is used to infer 
conclusions about the population.

c.	 Population Mean (μ): Represents the mean of values in the 
population.

d.	 Population Standard Deviation (σ): Represents the standard 
deviation of values in the population.

B.	 Variables

a.	 Dependent Variable (Y): The outcome or the variable of interest 
that the model aims to predict or explain (e.g., wage, price).

b.	 Independent Variables (X₁, X₂, ..., Xk): Factors that are posited 
to have an effect on the dependent variable (e.g., education 
level, experience). These are also called explanatory variables 
or predictors.

c.	 Control Variables (Z): Additional independent variables 
included to account for other factors affecting Y, denoted by Z 
(e.g., age, gender).

C.	 Parameters

a.	 Intercept (α): The constant term in the regression equation, 
representing the value of Y when all X’s are zero.

b.	 Slope Coefficient (β): The coefficient of each independent 
variable, measuring the change in Y for a one-unit increase in 
X, holding all other variables constant.
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D.	 Coefficients

a.	 Beta Coefficients (β₀, β₁, ..., βk ): Parameters in a population 
regression line that represent the effect of each independent 
variable on the dependent variable.

b.	 Estimated Coefficients (b₀, b₁, ...,bk ): Sample estimates of 
the population beta coefficients, obtained through regression 
analysis.

E.	 Error Term

a.	 Population Error Term (ε): The error in the prediction of the 
dependent variable in the population regression, capturing the 
effect of all other variables not included in the model.

b.	 Residual (e): The difference between the observed value and 
the predicted value of the dependent variable in the sample.

F.	 Regression Equation

a.	 Simple Linear Regression: Y = α + βX + ε (one independent 
variable)

b.	 Multiple Linear Regression: Y = α + β1X1 + β2X2 +...+ βk Xk + ε  
(more than one independent variables)

c.	 Population Regression Line: (Y = β0 + β1X1 +...+ βkXk + ε 
(unobserved, unknown).

d.	 Sample Regression Line: Ŷ = b0 + b1X1 +...+ bkXk (estimation of 
population regression line)

G.	 Estimation Methods

a.	 Ordinary Least Squares (OLS): The method of estimating 
the unknown parameters in a linear regression model by 
minimizing the sum of squared residuals.

b.	 Maximum Likelihood Estimation (MLE): A method of estimating 
parameters by maximizing the likelihood function.

H.	 Assumptions

a.	 Classical Linear Regression Model (CLRM) Assumptions: A set 
of assumptions required for OLS estimators to be BLUE (Best 
Linear Unbiased Estimators). These include linearity, no perfect 
multicollinearity, exogeneity, homoskedasticity, and normality 
of errors.DDE, P
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I.	 Goodness-of-Fit Measures

a.	 R-squared (R²): The proportion of the variance in the dependent 
variable that is predictable from the independent variables. 
Ranges from 0 to 1, with higher values indicating better fit.

b.	 Adjusted R-squared: Modification of R² that adjusts for the 
number of explanatory variables in a model relative to the 
number of data points.

c.	 Standard Error (SE): Measures the variability of the estimated 
coefficient around its true value. Lower SE indicates more 
precise estimates.

J.	 Test Statistics

a.	 t-statistic(t): Used to test if a single parameter is significantly 
different from zero. Compares the estimated coefficient to its 
standard error, assessing its statistical significance. A t-statistic 
greater than 2 (in absolute value) usually indicates a statistically 
significant coefficient. 

b.	 F-statistic (F): Used to test if a group of parameters are jointly 
different from zero. Tests the overall significance of the 
regression model, assessing whether the independent variables 
jointly explain a statistically significant portion of the variance 
in Y.

K.	 Hypothesis Testing

a.	 Null Hypothesis (H₀): A statement that there is no effect or no 
relationship (e.g., β₁ = 0).

b.	 Alternative Hypothesis (H₁): The statement that there is an 
effect or a relationship (e.g., β₁ ≠ 0).

L.	 Statistical Significance

a.	 Confidence Interval: A range of values derived from the sample 
statistics that is likely to cover the true population parameter.

b.	 p-value: The probability of obtaining the observed sample results 
when the null hypothesis is true. A small p-value (typically ≤ 
0.05) indicates strong evidence against the null hypothesis.

M.	 Diagnostics

a.	 Multicollinearity: A situation in which two or more explanatory 
variables in a multiple regression model are highly linearly 
related.
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b.	 Heteroskedasticity: The condition in which the variance of the 
residuals is not the same across all levels of the independent 
variables.

c.	 Autocorrelation: Correlation of the error term over time. High 
correlation among independent variables, leading to imprecise 
estimates.

d.	 Stationarity: A characteristic of a time series in which the 
properties do not depend on the time at which the series is 
observed.

N.	 Visualizations

a.	 Scatter Plot: Displays the relationship between two variables, 
with each data point representing a single observation.

b.	 Regression Line: A line drawn through the scatter plot, 
representing the predicted values of Y based on the regression 
equation.

For example, in a theoretical model hypothesizing a linear relationship 
between wages earned (outcome variable) and education and experience 
(predictor variables), the regression model can be formulated as:

Wages = α + β1 (Education) + β2 (Experience) + ε

Running an ordinary least squares procedure on this model will give 
estimations of population parameters interpreted as follows:

α = expected wage when both Education and Experience are zero

β1 average increase in wages for each additional year of education, 
holding Experience constant

β2 average increase in wages for each additional year of experience, 
holding Education constant

Data needed for estimating the relationship can either be collected by 
the researcher for the specific purpose of conducting this study (primary 
data) or can be extracted from datasets collected by other researchers or 
institutions for their own purposes (secondary data).

1.2.7  The Nature and Sources of Data for Econometric Analysis

Econometric analysis hinges on the quality and nature of its data. 
Understanding the data landscape is critical for researchers, as it shapes 
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the types of questions we can ask, the models we can build, and the 
conclusions we can draw. The specific types of data and considerations 
may vary depending on the research area and chosen methodology. There 
are many ways in which data can be classified. Following are sone of the 
major classification of data types:

A.	 Primary vs. Secondary Data

a.	 Primary data: Collected directly by the researcher for a specific 
research question. Offers greater control over data quality and 
content, but can be expensive and time-consuming to acquire. 
Examples: Surveys, experiments, field observations.

b.	 Secondary data: Already collected and compiled by other 
organizations (government agencies, research institutions, 
private companies). Offers readily available data, often covering 
large populations and extended time periods, but may have 
limitations in terms of scope, quality, and control. Examples: 
Census data, financial databases, market research reports.

B.	 Observational vs. Experimental Data

a.	 Observational Data: Drawn from real-world observations, it 
is non-experimental, meaning researchers cannot manipulate 
variables directly. Examples include:

i.	 Government data: Census data, labor market statistics, 
trade data (Strengths: Large scale, often publicly available; 
Limitations: Potential biases, limited control over variables)

ii.	 Surveys: Household surveys, business surveys (Strengths: Rich 
information on individual/firm behavior; Limitations: Sample 
selection bias, measurement error)

iii.	 Financial data: Stock prices, exchange rates (Strengths: High 
frequency, readily available; Limitations: Endogeneity, market 
microstructure issues)

b.	 Experimental Data: Derived from controlled experiments 
where researchers manipulate variables to observe their 
causal effects. While rare in economics due to cost and ethical 
concerns, it offers valuable insights when feasible. (Strengths: 
Direct identification of causal effects; Limitations: Limited 
generalizability, artificiality of lab settings)DDE, P
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C.	 Cross-sectional vs. Time-series vs. Panel Data

a.	 Cross-Sectional Data: Refers to data collected on different 
entities at a single point in time or over a very short period. 
These entities could be individuals, households, firms, countries, 
or a variety of other units. In a cross-sectional dataset, each 
observation represents a single entity and can include variables 
of interest such as income, education level, or expenditure on 
healthcare. The main advantage of cross-sectional data is that 
it can provide a snapshot of the population at a specific point 
in time, allowing for comparisons across different entities. 
However, one of the challenges with cross-sectional data is 
the potential for omitted variable bias, where unobserved 
differences between the entities can influence the results of the 
econometric analysis.

b.	 Time-Series Data: Consists of observations on a variable or 
several variables over time. These are sequential measurements 
taken at regular or irregular intervals. For example, time-series 
data can track the GDP of a country, stock prices, interest rates, or 
unemployment rates across several years or quarters. The analysis 
of time-series data allows economists to understand temporal 
dynamics, identify trends, and make forecasts. However, time-
series data can be complicated to analyze due to potential issues 
such as autocorrelation (where the value of a variable is correlated 
with its own past values), non-stationarity (where properties of the 
series like mean and variance change over time), and seasonality 
(periodic fluctuations due to seasonal factors).

c.	 Panel Data: Also called longitudinal data, combines the features of 
cross-sectional and time-series data. It consists of observations on 
multiple entities over multiple time periods. This data type allows 
for richer modeling of behavior because it captures both the inter-
temporal dynamics for each entity and the differences between 
entities. Panel data provide several advantages for econometric 
analysis. They can improve the estimation efficiency, control for 
individual heterogeneity, and provide a more complex structure that 
allows for more varied econometric models. However, panel data 
also come with challenges, such as the complexity of the models 
required to analyze them, potential for missing data issues, and the 
need for advanced techniques to handle the interdependence of 
observations within an entity over time.
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In addition to these primary data types, econometricians must also 
consider the sources and quality of data. Data can be obtained from 
surveys, administrative records, experiments, or observational studies. 
Each source has its strengths and weaknesses that can affect the reliability 
and validity of econometric inferences. Furthermore, issues such as 
measurement errors, sampling bias, and data cleaning can significantly 
influence the analysis.

The data should be free from errors and inconsistencies. Careful 
data collection and cleaning are essential. Data cleaning and pre-
processing are essential steps to ensure the reliability of analysis. When 
data does not accurately reflect the underlying variable, leading to 
biased estimates. For example, self-reported income in surveys may 
be underestimated. Missing values, outliers, and inconsistencies need 
careful attention. Missing data can introduce bias and limit the scope 
of analysis. Imputation techniques may be necessary to address missing 
values. The level of detail in the data determines the level of analysis 
possible. More detailed data allows for more nuanced insights but may 
also increase complexity and computational demands. And, finally, the 
data should represent the population of interest accurately. Selection 
bias can occur if specific groups are over- or underrepresented. When 
the sample of data does not represent the population of interest, leading 
to biased estimates. For example, A survey on health outcomes may 
only include people who are already interested in health.

Econometric studies make use of various types of data, each serving 
different research purposes and providing unique insights into economic 
behaviors and trends. The choice of data source for an econometric study 
depends heavily on the specific research question being investigated. 
However, some commonly used data sources for econometric studies 
include:

A.	 Government Agencies

i.	 National Statistical Offices: These agencies collect and publish 
a wide range of data on various topics, including demographics, 
economics, labor, and social indicators. Examples include:

a.	 United States: U.S. Census Bureau: [URL https://www.census.
gov/] 

b.	 India: Ministry of Statistics and Programme Implementation: 
[URL https://www.mospi.gov.in/] 
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c.	 The World Bank: World Development Indicators: [URL 
https://data.worldbank.org/] 

ii.	 Central Banks: Central banks collect and publish data on 
monetary policy, financial markets, and the economy. Examples 
include:

a.	 U.S. Federal Reserve: Board of Governors of the Federal 
Reserve System [URL https://www.federalreserve.gov/] 

b.	 Reserve Bank of India: [URL https://rbi.org.in/]

iii.	 Other Government Agencies: Many other government agencies 
collect and publish data relevant to specific sectors or topics. 
Examples include:

a.	 U.S. Bureau of Labor Statistics: Bureau of Labor Statistics: 
[URL https://www.bls.gov/]

b.	 India’s National Sample Survey Organization: [URL https://
www.india.gov.in/nsso-reports-publications]

B.	 International Organizations

i.	 International Monetary Fund (IMF): The IMF collects and 
publishes data on global economic indicators, including GDP, 
trade, and financial markets. [URL https://www.imf.org/]

ii.	 World Bank: The World Bank collects and publishes data on 
a wide range of topics related to development, poverty, and 
inequality. [URL https://data.worldbank.org/]

iii.	 Organization for Economic Co-operation and Development 
(OECD): The OECD collects and publishes data on economic, 
social, and environmental indicators for its member countries. 
[URL https://www.oecd.org/]

C.	 Private Sector

i.	 Commercial Databases: Many private companies provide access 
to economic and financial data through subscription-based 
services. Examples include:

a.	 Bloomberg Terminal: [URL https://www.bloomberg.com/
professional/]

b.	 Thomson Reuters Datastream: [URL https://www.lseg.com/
en/data-analytics/products/datastream-macroeconomic-
analysis]

c.	 Worldscope: Harvard Business School, Baker Library [URL 
https://www.library.hbs.edu/find/databases/worldscope]
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ii.	 Research Institutes: Some research institutes collect and publish 
data on specific topics. Examples include:

a.	 National Bureau of Economic Research (NBER): [URL 
https://www.nber.org/]

b.	 Pew Research Center: [URL https://www.pewresearch.org/]

iii.	 Individual Surveys: Researchers may also collect their own data 
through surveys or experiments.

Some of the most commonly used data repositories are:

A.	 Global

i.	 World Bank Open Data: A comprehensive repository of data 
on development indicators from the World Bank. [URL https://
data.worldbank.org/]

ii.	 United Nations Data: A repository of data from various UN 
agencies on a wide range of topics. [URL https://data.un.org/]

iii.	 The World Bank Indicators: A collection of indicators on 
various topics related to development. [URL https://databank.
worldbank.org/]

iv.	 OECD iLibrary: A repository of data and publications from the 
OECD. [URL https://stats.oecd.org/]

B.	 India

i.	 India Open Data Platform: A government initiative to promote 
open access to data from various ministries and departments. 
[URL https://data.gov.in/]

ii.	 National Data Repository: A repository of data from various 
government agencies in India. [URL https://www.ndsindia.
org/]

iii.	 MOSPI Data Portal: A data portal from the Ministry of Statistics 
and Programme Implementation. [URL https://mospi.gov.in/
data]

iv.	 Reserve Bank of India Database on Indian Economy (RBI-
DEIE): A database of economic and financial data from the 
Reserve Bank of India. [URL https://cimsdbie.rbi.org.in/DBIE/]

These are just a few examples, and the best data source for any 
particular study will depend on the specific research question and needs.DDE, P
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1.2.8  Summary

Econometrics is a pivotal field that bridges economics with statistical 
methods to analyze economic data, enabling economists to test hypotheses 
and forecast future trends. This discipline’s core revolves around regression 
analysis, a statistical technique used for estimating the relationships among 
variables. Over time, econometrics has evolved, incorporating complex 
models and methods to address various challenges, including non-linear 
relationships, endogeneity, and heteroscedasticity.

Econometrics has, as a discipline, transformed from simple linear 
regression models to more sophisticated econometric techniques. These 
advancements have been crucial for understanding economic phenomena 
in a more nuanced manner, allowing for more accurate predictions and 
policy evaluations. Distinctions between statistical and deterministic 
relationships, regression versus causation, and regression versus 
correlation are essential for interpreting econometric results correctly, as 
they highlight the limitations and potential misinterpretations of statistical 
analyses.

Econometric analysis relies on various data types, including cross-
sectional, time-series, and panel data. Each data type offers unique insights 
but also presents specific challenges that econometricians must navigate. 
Modern econometrics has expanded to include techniques like machine 
learning and big data analytics, reflecting the field’s adaptability to new 
technological advancements. This evolution signifies a shift towards more 
dynamic and flexible approaches to economic analysis, capable of handling 
the complexity and volume of contemporary data.

1.2.9  Keywords

Autocorrelation: The correlation of a variable with itself across 
different time intervals. In time-series data, it refers to the similarity 
between observations as a function of the time lag between them, 
which can affect the assumptions of classical regression models.

Causation vs. Correlation: A fundamental distinction in statistical 
analysis where causation implies a cause-effect relationship between 
variables, whereas correlation indicates a mutual relationship without 
implying cause and effect.

Cross-sectional Data: Data collected at a single point in time across 
several subjects, providing a snapshot of a system or phenomena.

DDE, P
on

dic
he

rry
 U

niv
ers

ity



Notes

38

Deterministic Relationship: A relationship where one variable 
deterministically determines another, without randomness in the 
association.

Endogeneity: A condition in regression analysis where an explanatory 
variable is correlated with the error term, leading to biased and 
inconsistent estimates.

Heteroscedasticity: A situation in regression models where the 
variance of the error terms varies across observations, potentially 
leading to inefficient estimates.

Multicollinearity: A situation in regression analysis where two or 
more independent variables are highly correlated, making it difficult 
to distinguish their individual effects on the dependent variable.

Panel Data: Data that combines cross-sectional and time-series data, 
tracking the same subjects across multiple time periods, enabling more 
nuanced analyses of changes over time.

Regression Analysis: A statistical technique used to estimate the 
relationships among variables. It is fundamental in econometrics for 
modeling and analyzing several variables’ interactions.

Statistical Relationship: A relationship between variables that is 
influenced by chance, implying that the relationship can vary and is 
not fixed or deterministic.

Time-Series Data: Data collected over several time periods, allowing 
for the analysis of trends, cycles, and other temporal effects on the 
subject of interest.

1.2.10  Self-assessment Questions

1.	 What is the historical origin of the term “regression” in statistics?

2.	 How does the modern interpretation of regression differ from the 
concept of “regression towards the mean”?

3.	 Distinguish between statistical and deterministic relationships in 
the context of regression analysis.

4.	 Explain the difference between correlation and causation, and how 
regression analysis addresses this distinction.

5.	 Describe the key terminology used in regression analysis, including 
dependent and independent variables, regression line, intercept, 
slope, and residuals.
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6.	 What are the different types of data commonly used in econometric 
analysis?

7.	 Discuss the importance of data quality in regression analysis and 
the potential consequences of using poor-quality data.

8.	 Can you think of an example where regression analysis has been 
used in a field other than econometrics?

9.	 What are some of the limitations of using regression analysis to 
draw conclusions about causal relationships?

10.	 How can you ensure that your interpretation of regression results is 
statistically sound and avoids common pitfalls?

1.2.11  References

1.	 Introductory Econometrics: A Modern Approach by Jeffrey M. 
Wooldridge. This textbook is renowned for its clarity and practical 
approach to econometrics. It covers basic concepts, regression 
analysis, and more advanced topics like panel data and instrumental 
variables. Wooldridge’s book is well-suited for undergraduates and 
graduate students alike, offering intuitive explanations and real-
world examples.

2.	 Econometric Analysis by William H. Greene. Greene’s book 
is a comprehensive guide that delves into both the theory and 
application of econometrics. It’s known for its rigorous treatment 
of statistical methods and its detailed exploration of econometric 
models, making it a staple for graduate students and professionals 
seeking a deeper understanding of the field.

3.	 Econometrics by Fumio Hayashi. This book provides a solid 
foundation in the principles of econometrics, focusing on 
estimation, inference, and other fundamental concepts. Hayashi 
emphasizes the use of matrix algebra in understanding econometric 
models, making it suitable for students with a strong quantitative 
background.

4.	 Econometrics by Bruce D. Hansen. This textbook offers a more 
concise and theoretical treatment of econometrics, suitable for 
undergraduates with a strong grasp of statistics and mathematics.

5.	 Using Econometrics: A Gentle Introduction by A. Colin Cameron 
and Pravin K. Trivedi. This textbook focuses on the practical 
application of econometrics, presenting various econometric 
techniques through real-world examples.
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UNIT - II : Two Variable and Multiple Regression Analysis

Lesson 2.1 – Simple Linear Regression Model

Structure

2.1.1	 Introduction to Regression Analysis

2.1.2	 Economic versus Statistical Model

2.1.3	 Observations and the Error Term

2.1.4	 Estimating the Parameters of the Econometric Model

2.1.5	 The Ordinary Least Squares Estimation Method

2.1.6	 The Maximum Likelihood Estimation Method

2.1.7	 Other Statistical-Econometric Models

2.1.8	 Summary

2.1.9	 Keywords

2.1.10	 Self-assessment Questions

2.1.11	 References

2.1.1  Introduction to Regression Analysis

Regression analysis is a fundamental statistical technique used to 
investigate the relationships between variables. At its core, regression 
analysis allows us to model, examine, and predict the association between a 
dependent variable and one or more independent variables. The dependent 
variable, also known as the outcome or response variable, is the variable 
we are trying to understand or predict. The independent variables, often 
termed predictors or explanatory variables, are the variables presumed to 
influence the dependent variable. The importance of regression analysis 
lies in its versatility; it can be applied to a myriad of economic questions, 
from assessing the impact of education on earnings to understanding the 
determinants of consumer spending.

The simplest forms of regression analysis is the linear regression 
model, which assumes a linear relationship between the dependent and 
independent variables. This model is instrumental in scenarios where the 
objective is to understand how a unit change in the independent variable 
affects the dependent variable. For instance, consider the relationship 
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between household income (independent variable) and expenditure on 
consumer durables (dependent variable).

The relationship is called linear because the datapoints of income and 
expenditure can be modeled as a geometrical straight line with parameters,
represented as coefficients of the straight line:

y=c+mx

A linear regression model could help quantify how changes in income 
influence spending on consumer durables, offering valuable insights for 
businesses and policymakers alike. However, the real world is seldom 
linear or simple. Economic relationships often involve multiple factors 
interacting in complex ways, necessitating the use of multiple and nonlinear 
regression analysis. 

The multiple regression model incorporates several independent variables 
to explain the variation in the dependent variable, providing a more nuanced 
understanding of the economic dynamics at play. For example, to analyze the 
factors influencing house prices, a multiple regression model might include 
variables such as location, size, age, and proximity to amenities. Such an 
analysis can reveal the relative importance of these factors, guiding both 
buyers in their decisions and governments in their housing policies.

Beyond linear models, regression analysis encompasses a variety of 
techniques to tackle different types of data and relationships. Logistic 
regression, for instance, is used when the dependent variable is binary, such 
as when studying the likelihood of a consumer defaulting on a loan based 
on their credit score and income level. Similarly, time series regression 
models are crucial for analyzing data that is sequential in time, enabling 
economists to forecast future economic conditions based on past trends.

The application of regression analysis extends across the economic 
spectrum; it has seemingly endless applications–to illustrate a few:

 	 ➢ Sales Forecasting: A business might use regression to predict sales 
based on factors like advertising expenditure, historical sales data, 
and economic indicators.

 	 ➢ Medical Diagnosis: Regression can help determine risk factors for 
a disease. For instance, modeling blood pressure based on age, 
weight, diet, and exercise.
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 	 ➢ Stock Market Modeling: Stock prices can be modeled using 
regression analysis with variables such as company earnings, 
interest rates, and market sentiment.

 	 ➢ House Price Prediction: Regression helps predict housing prices 
based on characteristics like square footage, number of bedrooms, 
location, and neighborhood amenities.

 	 ➢ Student Performance Analysis: Educators may use regression to 
analyze student performance based on factors such as prior grades, 
study habits, and socioeconomic background.

Despite its widespread application and utility, regression analysis is not 
without limitations. The accuracy of regression models depends heavily on 
the quality of the data and the appropriateness of the chosen model. Issues 
such as multicollinearity among independent variables, heteroscedasticity, 
and autocorrelation can undermine the reliability of the estimates and lead 
to misleading conclusions. For linear regression to produce reliable results, 
certain assumptions must hold true:

 	 ➢ Linearity: The relationship between the dependent and independent 
variable(s) is linear.

 	 ➢ Independence of Errors: Errors are independent of each other (no 
autocorrelation).

 	 ➢ Homoscedasticity: Constant variance of errors across different 
values of independent variables.

 	 ➢ Normality of Errors: Errors are normally distributed.

The choice of model, the accuracy of data, and the assumptions 
underlying the statistical methods are paramount considerations that 
determine the reliability and validity of the analysis. The process of 
conducting a regression analysis involves several critical steps:

 	 ➢ Data Preparation: Ensure data is clean, formatted correctly, and 
missing values are addressed. Outliers should be examined.

 	 ➢ Exploratory Data Analysis (EDA): Visualize using scatterplots, 
histograms, and other techniques to check assumptions and spot 
patterns.

 	 ➢ Model Fitting: Select the appropriate regression type and use 
statistical software to estimate the model coefficients.

 	 ➢ Model Evaluation: Assess the model fit using R², residuals, and 
significance tests. 
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 	 ➢ Diagnostics: Check for violations of assumptions (e.g., linearity, 
homoscedasticity) and address them if necessary.

 	 ➢ Prediction and Interpretation: Utilize the model to predict values of the 
dependent variable for new data points and carefully interpret results.

The economists must exercise caution, employing diagnostic tests 
and robust statistical techniques to validate their models and ensure the 
integrity of their findings.

2.1.2  Economic Versus Statistical Model

In econometrics, economic and statistical models serve as indispensable 
tools for analyzing and comprehending complex economic phenomena. 
While economic models provide a theoretical framework for economic 
relationships, statistical models offer the means to quantify and test these 
relationships using empirical data.

An economic model is an abstract, simplified representation of 
economic processes or behaviors. It employs a set of variables and logical or 
quantitative relationships to depict how these variables interact within an 
economic system. Economic models are built upon theoretical assumptions 
and aim to capture the essence of economic decision-making and outcomes. 
For instance, the supply and demand model in microeconomics simplifies 
the market mechanism by assuming ceteris paribus (all other factors being 
constant), focusing on the relationship between the price of a good and 
the quantity supplied and demanded. Key features of an economic model 
include:

 	 ➢ Variables: Economic models incorporate both endogenous 
variables (determined within the model) and exogenous variables 
(determined outside the model). For example, a model analyzing 
consumer demand might include price and income as exogenous 
variables, while the quantity demanded becomes the endogenous 
variable.

 	 ➢ Assumptions: These form the foundation of economic models and 
often involve simplifying complex realities to make the model more 
tractable. Assumptions like perfect information, rational economic 
agents, or the absence of market frictions are common.

 	 ➢ Relationships: The core of the model lies in the postulated 
relationships between the variables. They could be functional 
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forms (i.e., linear, non-linear), causal directions, and qualitative 
expectations about the interplay of variables. For instance, the 
law of demand suggests an inverse relationship between price and 
quantity demanded.

A classic example of an economic model is the demand model. In its 
basic form, it theorizes that:

 	 ➢ The quantity demanded of a good/service is inversely related to its 
price.

 	 ➢ Consumer’s income influences demand (usually positively).

 	 ➢ The price of related goods (substitutes or complements) also 
impacts demand.

This model uses assumptions like consumers acting rationally to 
maximize satisfaction within their budget constraints.

In contrast to the theoretical nature of economic models, statistical 
models focus on the empirical side of analysis. They utilize statistical 
techniques to establish relationships between variables based on real-world 
observations. Statistical models help estimate the strength and direction of 
the relationships hypothesized by economic models and provide a means 
to test them. By incorporating probability distributions, statistical models 
account for uncertainty and variability in data, facilitating inference 
about the broader population from sample observations. A simple linear 
regression model, for example, can be used to understand how changes in 
one variable (independent variable) are associated with changes in another 
(dependent variable), incorporating randomness and uncertainty inherent 
in real-world data. A statistical model generally entails:

 	 ➢ Data: The backbone of a statistical model is a dataset containing 
observations on the relevant variables identified by the economic 
model.

 	 ➢ Functional Form: This mirrors the hypothesized relationship; 
often, it’s the mathematical equation drawn from the economic 
model.

 	 ➢ Stochastic component: Statistical models recognize that the real 
world is rarely as precise as theoretical models. It includes a random 
error term to account for unexplained variation and other factors 
not explicitly included in the model.
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The demand model, previously explained from a theoretical 
perspective, can be converted into a statistical representation:

Qd = β0 + β1P + β2I + β3Pr + ε

Where:

 	 ➢ Qd  = Quantity demanded

 	 ➢ P = Price of the good

 	 ➢ I = Consumer income

 	 ➢ Pr = Price of a related good

 	 ➢ β0, β1, β2, β3 = Model parameters (coefficients) to be estimated

 	 ➢ ε = Random error term

The conversion of an economic model into a statistical model is driven by 
the necessity to empirically test theoretical predictions against real-world data. 
Economic models provide the hypotheses, while statistical models offer the 
tools for empirical verification. This process is essential for validating theories, 
informing policy, and advancing our understanding of economic phenomena. 
This transformation is necessary because, while economic models can 
elucidate theoretical relationships, statistical models allow for the testing of 
these theories against real-world data. Several compelling reasons necessitate 
the conversion of economic models into their statistical counterparts:

1.	 Quantification: Economic models often provide qualitative 
predictions (e.g., an increase in price leads to a decrease in demand). 
Statistical models quantify these effects, offering precise estimates 
of the change in demand given a change in price.

2.	 Empirical Validation: Economic theories need testing. Statistical 
models bridge the gap between theory and reality, allowing us to 
empirically test the validity of a hypothesized economic relationship.

3.	 Forecasting: Statistical models built on sound economic principles 
facilitate prediction of future economic outcomes based on projected 
changes in the explanatory variables.

4.	 Uncovering Hidden Factors: The error term in the statistical 
model can reveal inadequacies of the original economic model and 
signal other potentially important factors that were not initially 
considered by the theory.

The transformation of an economic model into a statistical counterpart 
involves a few key steps:
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1.	 Specification: Informed by the economic model, the first step is 
determining the precise functional form of the statistical model. 
This means deciding:

 	 ➢ Which variables (from the economic model) to include.

 	 ➢ Whether there are interactions between variables.

 	 ➢ Any potential nonlinearities (e.g., using squared terms or 
logarithmic transformations)

2.	 Data Collection: The specified model dictates the relevant data 
needed. Economists must source reliable data on all the variables 
involved. The quality and availability of data significantly influence 
the reliability of the statistical model’s results.

3.	 Estimation: This is where statistical techniques come into play. 
Using software tools, econometricians employ methods like 
Ordinary Least Squares (OLS) regression to estimate the unknown 
parameters (the β coefficients) of the model. These estimated 
coefficients provide insight into the magnitude and direction of the 
relationships between the variables.

4.	 Hypothesis Testing: Statistical models allow us to test our economic 
theories rigorously. Using tools like t-tests and F-tests, economists assess:

 	 ➢ Statistical Significance: Are the estimated relationships 
statistically significant, or could they have occurred just by 
chance?

 	 ➢ Economic Significance: Beyond statistical significance, 
we must consider the real-world impact of the magnitudes 
discovered. Does the model explain a meaningful portion of 
the variation in the data?

5.	 Diagnostic Checks: Before accepting the results, econometricians 
conduct diagnostic tests. This involves checking whether the 
model’s assumptions hold, like the normality of the error term, 
absence of problematic multicollinearity among the variables, and 
more. If these assumptions are seriously violated, the model may 
need refinement.

Let’s say, a researcher wants to empirically analyze the demand for 
coffee in a specific region. Using the economic model of demand as a 
guide, here’s the process they might follow:DDE, P
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 	 ➢ Specification: The statistical model might be: Qd = β0 + β1Pcoffee 

+ β2PavgIncome + β3Ptea + ε (where Ptea is the price of tea, a possible 
substitute).

 	 ➢ Data Collection: Data would be gathered on coffee sales (Qd), the 
price of coffee (Pcoffee), average consumer income in the region 
(PavgIncome), and tea prices (Ptea) over a period of time.

 	 ➢ Estimation: Using regression analysis, the researcher estimates the 
unknown coefficients (β).

 	 ➢ Hypothesis Testing: Were the estimated coefficients statistically 
significant? Did they align with the expectations of the economic 
model (e.g., negative coefficient for Pcoffee)?

 	 ➢ Diagnostic Checks: Did the model’s errors seem randomly 
distributed? Was there any concerning correlation between the 
explanatory variables?

Consider another real-world application where policymakers are 
interested in understanding the impact of a soda tax on soda consumption. 
The economic model suggests that imposing a tax on soda would increase 
its price, leading to a decrease in quantity demanded.

 	 ➢ Economic Theory: Increase in soda tax leads to higher prices and 
thus lower quantity demanded.

 	 ➢ Econometric Model: (Qd = β0 – β1Pricesoda + Є)

 	 ➢ Statistical Analysis: Data on soda prices (including the tax) 
and quantity sold are collected across various regions. Using an 
econometric estimation method, the effect of price on quantity 
demanded is estimated.

 	 ➢ Findings and Policy Implications: If the estimated coefficient for 
soda price is negative and statistically significant, it supports the 
hypothesis that the soda tax reduces consumption. This outcome 
can inform policymakers about the efficacy of the tax in achieving 
public health objectives.

From macroeconomics perspective, consider the question of how a tax 
on carbon emissions affects economic productivity. The economic model 
might posit that higher taxes on carbon lead to reduced emissions but might 
also impact productivity negatively. To empirically test this theory, we:

 	 ➢ Define productivity and carbon tax as our key variables, 
hypothesizing a negative relationship.
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 	 ➢ Develop an econometric model that relates productivity to carbon 
tax and potentially other control variables (e.g., capital investment, 
labor force size).

 	 ➢ Incorporate randomness and other factors not explained by the 
model through an error term, specifying assumptions about this 
term’s distribution.

 	 ➢ Use data on carbon taxes and productivity measures across different 
regions or times to estimate the model’s parameters.

 	 ➢ Perform hypothesis testing to assess the statistical significance of 
the relationship between carbon taxes and productivity, thereby 
providing empirical evidence on the economic theory.

Another classic application of converting an economic model into 
a statistical model involves examining the impact of minimum wage 
increases on employment levels. The economic model might posit that 
higher minimum wages lead to lower employment due to increased labor 
costs. To test this theory, an econometric model could specify employment 
levels as a function of the minimum wage, controlling for other factors 
affecting employment. The statistical model would then include an error 
term to capture deviations from the model due to unobserved factors. 
By analyzing data on minimum wage changes and employment across 
different regions and time periods, researchers can estimate the model’s 
parameters and test the economic theory against observed outcomes. 
While the transformation process may seem straightforward, it is crucial 
to acknowledge certain challenges and nuances:

 	 ➢ Data Limitations: The desired data may not be readily available or 
may be of poor quality, affecting the accuracy of the model.

 	 ➢ Omitted Variable Bias: The economic model may not account for 
all relevant factors. Omitting important variables in the statistical 
model can lead to biased results.

 	 ➢ Structural Breaks: Major economic events or significant policy 
changes can cause the underlying economic relationships to shift 
over time. Statistical models need to account for such breaks to 
maintain their validity.

Econometrics is as much an art as it is a science. Building reliable 
statistical models requires both a strong understanding of economic 
principles and the careful application of statistical methods. Success often 
relies on an iterative process of model refinement, data adjustments, and 
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careful exploration of alternative specifications until a model that is both 
statistically sound and economically meaningful is achieved.

2.1.3  Observations and the Error Term

Econometrics aims to test economic theories and models, often relying 
on observational data. This approach invariably introduces an element of 
uncertainty and variability unaccounted for within the theoretical structure 
of an economic model. Statistical models bridge this gap between economic 
theory and messy real-world data by incorporating this uncertainty via a 
key component: the error term.

A typical statistical model for regression analysis comprises several key 
components: the dependent variable, independent variables, coefficients, 
and the error term. Each component plays a critical role in the model’s 
construction and interpretation:

 	 ➢ Dependent Variable (Y): This is the outcome or variable of interest 
that the model seeks to predict or explain. It is dependent on the 
independent variables. For example, in studying the impact of 
education on earnings, earnings would be the dependent variable.

 	 ➢ Independent Variables (X): These are the predictors or explanatory 
variables that are believed to have an effect on the dependent 
variable. In our example, the level of education, years of experience, 
and industry of employment could serve as independent variables.

 	 ➢ Coefficients (β): These values quantify the relationship between each 
independent variable and the dependent variable. A coefficient indicates 
the expected change in the dependent variable for a one-unit change in the 
independent variable, holding all other variables constant.

 	 ➢ Error Term (ε): The error term represents the portion of the 
dependent variable that cannot be explained by the independent 
variables. It encompasses all other factors affecting the dependent 
variable that are not included in the model.

For example, the basic Keynesian consumption function posits:

C = a + bY

where:

C = Consumption expenditure

Y = Disposable income
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a = �Autonomous consumption (consumption when income is zero)

b = Marginal propensity to consume (MPC)

In order to test the validity of a theoretical model and estimate its 
parameters, we need to transform the economic model into a statistical 
one. Considering our consumption example, the statistical model would 
become:

C = β0 + β₁Y + ε

Where β0 and β₁ are population parameters (theoretical counterparts 
of a and b) to be estimated from the data, and ε is the error term.

The error term (ε) is a crucial component that encompasses all the 
complexities missing from our simplified economic model. It accounts for:

 	 ➢ Measurement Errors: Imprecision or inaccuracies in data collection 
of variables like consumption expenditure or income.

 	 ➢ Omitted Variables: Economic relationships are rarely isolated. 
There might be numerous minor influencing factors not explicitly 
included in the model.

 	 ➢ Incorrect Functional Form: The specified mathematical 
relationship (linear in this case) might be an approximation of a 
more complex, non-linear reality.

 	 ➢ Stochastic Nature of Behavior:  Individual economic behavior can 
exhibit a degree of inherent randomness or unpredictability.

For our statistical analysis to produce reliable results, we make certain 
assumptions about the error term:

 	 ➢ Zero Mean: On average, the errors will balance out across 
observations (E[ε] = 0). This implies no systematic over or 
underestimation of the dependent variable.

 	 ➢ Constant Variance (Homoscedasticity): The error term has the 
same variance (Var[ε] = σ²) across  across all observations.

 	 ➢ No Autocorrelation: The error terms are uncorrelated with each 
other; errors in one period have no bearing on errors in other 
periods (cov(εi,εj) = 0 for i ≠ j).

 	 ➢ Normality: The error term follows a normal distribution. While 
not strictly necessary, this assumption helps with hypothesis testing 
and confidence intervals. 
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A well-constructed statistical model allows us to isolate the effect of 
specific economic variables while accounting for uncertainty and other 
unobserved factors. To illustrate the application of regression analysis and 
the role of the error term, consider two examples from economics:

As first example, consider the impact of education on earnings. 
The economic model, based on the human capital theory suggests that 
an individual’s earnings increase with higher levels of education, ceteris 
paribus. To test this theory, a regression model could be specified as:

Earnings = β0 + β1 (Years of Education) + Є

Here, the dependent variable is earnings, and the independent 
variable is years of education. The error term represents factors other than 
education that might influence earnings, such as experience, innate ability, 
and economic conditions.

For second example, consider the theory of wage determination. 
It suggests that current wage is determined majorly by education level, 
experience, skills, and other factors. The corresponding statistical model 
for predicting potential future wage would be:

Wage = β0 + β1 (Education) + β2 (Experience) + β3 (Skills) + ε

The error would encapsulate factors like unobserved ability/
motivation, discrimination, regional wage differences, measurement 
errors in experience, etc.

In econometrics, the construction of a statistical model to examine an 
economic model is a meticulous process that requires careful consideration 
of the dependent and independent variables, the estimation of coefficients, 
and, crucially, the understanding of the error term. The error term is not 
merely a catch-all for unexplained variation but a critical component that 
influences the model’s specification, estimation, and inference.

2.1.4  Estimating the Parameters of the Econometric Model

The estimation of parameters in an econometric model is a fundamental 
aspect of regression analysis. These models comprise parameters—
constants that shape the model’s specific form and predictions. Estimating 
these parameters from available data is crucial for the model to provide 
accurate, reliable predictions and inferences about economic phenomena. 
For example, take a model examining the relationship between household 
and expenditure:
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Expenditure = β0 + β1 (Income) + ε

Here, expenditure is the dependent variable, income is the independent 
variable (also called the regressor or explanatory variable), and ε is the 
error term that encompasses all factors influencing expenditure that are 
not explicitly included in the model. The parameters of this model are:

 	 ➢ 	β0 (intercept): the expected expenditure when income is zero. 

 	 ➢ β1 (slope): the expected change in expenditure for a one-unit change 
in income.

The central goal of parameter estimation is to find the best values of β0 and 
β1 that describe the observed economic data. Best, in this context, depends on 
the estimation method selected. Let’s say that we collect a sample of household 
income and expenditure data. The estimation aims to find a line (defined by 
its intercept and slope) that most closely reflects the underlying relationship 
observed in the data. Of course, the line is unlikely to pass through every 
data point perfectly, representing the role of other factors and potential 
measurement errors captured within the error term.

Estimating the parameters of an econometric model involves using 
statistical methods to infer the values of these parameters that best explain 
the observed data. The accuracy and reliability of econometric analyses 
hinge on the precision of these estimations, as they directly influence the 
model’s predictive power and the validity of the inferences drawn from 
it. Several methods exist for the estimation of parameters in econometric 
models. The most prevalent techniques include:

Ordinary Least Squares (OLS): OLS remains the workhorse of 
econometric estimation. Its principle is to find the parameter values that 
minimize the sum of squared errors (residuals), i.e., the vertical distances 
between the actual data points and the line defined by the estimated 
parameters. OLS is computationally straightforward and has desirable 
statistical properties under specific assumptions. It makes the following 
assumptions:

 	 ➢ Linearity: The relationship between the dependent and independent 
variables is linear.

 	 ➢ Independence: Observations are independent of each other.

 	 ➢ Homoscedasticity: The variance of the error terms is constant 
across observations.
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 	 ➢ Normality: The error terms are normally distributed (especially 
relevant for hypothesis testing).

These assumptions also mark the limitations of the technique:

 	 ➢ Non-linearity, heteroscedasticity, or autocorrelation in the data can 
lead to biased and inefficient OLS estimates.

 	 ➢ OLS is sensitive to outliers and can be influenced by multicollinearity.

OLS is apt for situations where the relationship between variables is 
linear and the data meet the assumptions of independence, homoscedasticity, 
and normality. It is extensively used in economics for demand analysis, 
forecasting, and policy evaluation. For example, economists analyze the 
price elasticity of demand for a product using a model where quantity 
demanded is the dependent variable and price is the independent variable. 
OLS estimation helps quantify how much demand changes in response to 
price changes. Also, in analyzing the factors affecting housing prices, an 
economist might use OLS to estimate a linear regression model where the 
dependent variable is the price of houses and the independent variables 
include house size, location, age, and other relevant factors. This analysis 
can inform policy decisions regarding housing affordability and urban 
planning.

Maximum Likelihood Estimation (MLE): MLE involves finding 
the parameter values that maximize the probability (likelihood) 
of observing the given data, conditional on a specific probability 
distribution for the errors. MLE is flexible in accommodating different 
distributional assumptions and is generally statistically efficient. The 
method assumes:

 	 ➢ A specified probability distribution for the error terms.

 	 ➢ Independence of observations.

 	 ➢ Adequately large sample size for the Law of Large Numbers to hold.

The limitations of this technique are:

 	 ➢ MLE requires the specification of a probability distribution for the 
error terms, which might be incorrect.

 	 ➢ It can be computationally intensive for complex models.

 	 ➢ MLE estimates can be biased in small samples.DDE, P
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MLE is particularly useful for non-linear models and models where 
the error terms follow a non-normal distribution. It is widely used in 
duration analysis, count data models, and for estimating the parameters of 
discrete choice models. An example of MLE application is in the analysis of 
unemployment duration. By assuming that the duration of unemployment 
periods follows a particular probability distribution (e.g., exponential 
or Weibull), economists can use MLE to estimate the parameters of this 
distribution, thereby gaining insights into the dynamics of job search 
behavior and the effectiveness of labor market policies. MLE estimation 
is also employed in asset pricing models (e.g., the Capital Asset Pricing 
Model), where the expected return of an asset is a function of its systematic 
risk. OLS and MLE often find application in such models.

Instrumental Variables (IV): IV estimation is employed when an 
independent variable is correlated with the error term (a problem 
known as endogeneity). IV techniques use “instruments,” variables 
correlated with the independent variable but uncorrelated with the 
error term, to obtain consistent estimates.

Generalized Method of Moments (GMM): GMM is a powerful and 
versatile framework that encompasses many estimation techniques as 
special cases. It utilizes “moment conditions” (expectations involving 
the data and model parameters) to derive parameter estimates, making 
it more robust to assumptions than OLS and MLE. GMM is a flexible 
estimation technique that generalizes the method of moments by 
allowing for the use of multiple moment conditions. It is particularly 
useful when the model’s assumptions do not perfectly match the 
characteristics of the data. The method only assumes that:

 	 ➢ The model’s specified moment conditions are valid.

 	 ➢ The instruments used are valid (uncorrelated with the error term).

It suffers from the following limitations:

 	 ➢ The choice of instruments and moment conditions can significantly 
affect the estimates.

 	 ➢ GMM estimates can be inefficient if the wrong moment conditions 
or instruments are used.

GMM is applicable in situations where traditional assumptions 
(such as normality or homoscedasticity) do not hold, or when dealing 
with simultaneous equations models. It has been employed in financial 
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economics to estimate risk-return tradeoffs and in macroeconomics to 
estimate dynamic stochastic general equilibrium (DSGE) models.

For instance, GMM is used in financial economics to estimate the 
parameters of asset pricing models. By using historical data on asset 
returns and applying relevant moment conditions, researchers can assess 
the validity of different asset pricing theories and their implications for 
investors’ portfolio choices. In macroeconomics, researchers investigate 
the determinants of economic growth by constructing models where GDP 
growth is the dependent variable, and explanatory variables may include 
investment rates, education levels, and technological progress. IV and 
GMM techniques might be needed to address endogeneity among these 
variables. Deciding which estimation method to use requires careful 
consideration of several factors:

 	 ➢ Distributional Assumptions: MLE is often tied to a specific 
distributional assumption about the error term (e.g., normal 
distribution). OLS, although less sensitive to the error distribution, 
still performs best with normally distributed errors.

 	 ➢ Endogeneity: Problems like omitted variables, measurement errors, 
or simultaneity cause endogeneity, invalidating OLS. IV techniques 
address such endogeneity issues.

 	 ➢ Computational Complexity: MLE and GMM can be computationally 
more demanding than OLS, especially with complex models.

It is vital to be mindful of the potential limitations of econometric 
estimation:

 	 ➢ Model Misspecification: If our underlying theoretical model is 
flawed (e.g., excluding relevant variables), even a correctly estimated 
model leads to biased results.

 	 ➢ Data Quality: Poor quality data with measurement errors or 
outliers can severely distort estimates.

 	 ➢ Structural Change: If the underlying relationships change over 
time, using the entire dataset for estimation can provide misleading 
results.

 	 ➢ Interpretation: It is crucial to interpret estimated parameters 
within the context of the economic theory and limitations of the 
model.
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The judicious choice of estimation techniques, coupled with a careful 
interpretation of the estimated parameters, allows us to extract valuable 
insights from economic data to inform better decision-making in both 
policy and business realms. While each estimation method has its own 
set of assumptions and limitations, the choice of method depends on the 
model specification, the nature of the data, and the research objectives. 
Understanding these techniques in depth, along with their applicability 
and limitations, is essential for conducting rigorous econometric analysis 
and for the critical evaluation of econometric research.

2.1.5  The Ordinary Least Squares Estimation Method

Ordinary Least Squares (OLS) seeks to find the best-fit line through 
a set of data points. This line represents a linear model that describes the 
relationship between an outcome variable (dependent variable) and one 
or more predictor variables (independent variables). Imagine a scatterplot 
depicting the relationship between an individual’s income (outcome 
variable) and their education level (predictor variable). The OLS method 
attempts to draw the “best” line summarizing the pattern in this data.

The OLS method works by minimizing the sum of squared errors, also 
known as residuals. Residuals are the vertical distances between the actual 
data points and the fitted regression line. In other words, it minimizes the 
sum of the squared vertical distances between the observed responses in the 
dataset and the responses predicted by the linear approximation. The aim is to 
find the line that results in the smallest possible sum of these squared errors.

The use of OLS as an econometric model to estimate (or predict) 
the values of an outcome variable must be preceded by analyzing the 
relationship between the outcome and the predictor variables from within 
the theory and then, by examining the relationship between the two by 
plotting the data points from the sample collected. Only if the theory 
postulates a linear relationship between the two variables or, in absence 
of a clear formulation, if the scatter plot exhibits a pattern that can be 
reasonably approximated by a straight line, can the OLS method be used 
in any statistically meaningful way.
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Figure 1: Scatterplots and Correlations (This Photo by Unknown Author is 
licensed under CC BY-SA)

Consider an example from the macroeconomic theory. The Keynesian 
consumption function says that consumption is dependent primarily on 
the level of income. So mathematically the relationship between the two 
can be simply put as:

c = f(y)

Where, c is the consumption expenditure and y is the level of income. 
But the theory does not specify any specific functional form. This can 
be examined only by collecting a sample of consumption expenditures 
and income levels of households. The sample datapoints are then scatter 
plotted in order to infer a pattern among them. If the scatter points are 
within a tight enough narrow band, the relationship between consumption 
and income can be said to be approximated by a straight line–the sample 
consumption function:

c = bo + b1y

This sample consumption function is the representative of the true 
population consumption function, given by:

C = β0 + β1Y 

But the mathematical form of the consumption function may not 
capture all factors that influence the consumption decision of the 
household–even though the income may well be the single most important 
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factor in that decision. To account for the uncertainty, reflected by the 
spread of datapoints in the scatterplot, an error term is added to the 
equations converting them into statistical models:

Population: C = β0 + β1Y + u

Sample : c = bo + b1 y + e

For econometric estimation, a sample will be collected and the 
estimation equation will take the form:

ci = bo + b1 yi + ei

Where the subscript, i, represents the values observed for the ith 
household. Thus, the error in estimation can be represented as:

ei = ci – (bo + b1yi)

If the sample collected is of the size n, then the OLS estimators of β0 
and β1 are calculated by minimizing the sum of squared errors:

�( )2
2

1
: n

i ii i
c cmin e

=
−=∑

Where (ĉi)is the predicted value of ci , given by ĉ i = b0 + b1yi. The 
minimization leads to the OLS normal equations, which can be solved 
to obtain the values of the parameters. We will show how to derive the 
expressions for the parameters of a simple linear regression equation using 
the generalized form:

yi = β0 + β1xi + ei

The sum of squared errors would be:
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To find the minima, we take out first order partial derivatives of the sum 
of squared errors:
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and set them to zero in order to find out the points (b0, b1) that minimize 
the function:

        ( )0 12 0i iy Nb x b∑ − −∑ =

( )2
0 12 0i i i ix y x b x b∑ −∑ −∑ =

Where b0 and b1 are the estimates of β0 and β1, respectively. Rearranging 
the equations will yield:

0 1i iNb x b y+∑ = ∑

2
0 1i i i ix b x b x y∑ +∑ = ∑

These normal equation can be solved as a system of simultaneous equations 
in two variables, b0 and b1.We multiply both sides of the first equation by 
Σxi and both sides of the second equation with N to get:
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Subtracting the first equation above from the second yields:
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Solving for b_1 yields:
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Which can be alternatively expressed as:
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Also, dividing both sides of the first normal equation by N yields:
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Consider a simple dataset to illustrate OLS estimation and interpretation. 
We wish to estimate the relationship between education and income,  
Y = β0 + β1X + ui, for which we collect data from ten individuals about their 
monthly income (Y) and years of education (X). Table below lists the data 
points.

Education (years) [X] Income (‘000s) [Y]

0 0

2 5

4 10

6 15

8 20

10 25

12 30

14 35

16 40

18 45

20 50

The sample linear regression equation would be: yi = b0 + b1 xi + ei. The 
sample means are: x- =10; y- = 22.45. Putting these values in the OLS normal 
equations, gives us: b0 ≅ 0; b1 = 2.25. This means that, on average, each 
additional year of education is associated with an increase of Rs.2250 
in income. The intercept (b0 ≅ 0) can be interpreted as the expected 
income (in this case, Rs.0 per month) for an individual with zero years 
of education. This estimate quantifies the marginal effect of education on 
income, suggesting a positive and significant relationship between these 
variables in our model.

Let us plot the regression line along with the data points to visually 
assess the fit of our model. The graph will show the observed data points 
(income as a function of education) and the estimated regression line 
based on the calculated OLS coefficients.DDE, P
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Figure 2: The Fitted Regression Line

The plot illustrates the observed data points (in blue) representing the 
relationship between income and years of education. The OLS regression 
line (in orange) provides a linear approximation of this relationship, 
based on the calculated estimators. This visual representation confirms 
our earlier interpretation: as education increases, income also tends to 
increase, with the rate of increase being approximately Rs.2250 for each 
additional year of education.

The OLS estimators have several important properties. They are the 
best, unbiased estimators among the class of linear estimators–a property 
commonly summarized as BLUE (best, linear, unbiased estimator):

 	 ➢ Efficiency (Best): Among all linear and unbiased estimators, OLS 
estimators have the smallest variance.

 	 ➢ Linearity: They are linear functions of the dependent variable. 
Alternatively, they can be interpreted as being linear in parameters.

 	 ➢ Unbiasedness: On average, the estimators will equal the true 
parameter values.

 	 ➢ Consistency: As the sample size increases, the estimators converge 
in probability towards the true parameter values.

Recent research has shown that if the underlying data is normally 
distributed, the OLS estimators are the best unbiased estimators among 
all possible estimators. But these properties of the OLS estimators are 
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predicated on a set of assumptions. For OLS to produce reliable results, 
certain assumptions must be met. The classical OLS assumptions are:

1.	 Linearity: The relationship between the independent and dependent 
variables is linear.

2.	 No Perfect Multicollinearity: The independent variables are not 
perfectly linearly related.

3.	 Zero Conditional Mean: The expected value of the error term, given 
the independent variable, is zero.

4.	 Homoscedasticity: The error terms have constant variance.

5.	 No Autocorrelation: The error terms are not correlated with each 
other.

6.	 Normality of Errors (optional for inference): The error terms are 
normally distributed.

While OLS is widely used, it has limitations: (i) applies only to 
linear models, (ii) is sensitive to outliers (which can significantly affect 
the estimates), and (iii) violations of its assumptions can lead to biased, 
inconsistent, or inefficient estimators.

After calculating the OLS estimates, it is essential to conduct diagnostic 
tests to check for violations of OLS assumptions (e.g., residual plots to 
assess normality, homoscedasticity, etc.). Also, OLS estimates come with 
standard errors. These allow for hypothesis testing and construction 
of confidence intervals to determine the statistical significance of the 
relationship.

OLS is a fundamental tool in econometrics, offering a simple yet 
powerful method for linear regression analysis. Understanding its 
assumptions, limitations, and proper application is crucial for accurate 
modeling and interpretation of relationships between variables.

2.1.6  The Maximum Likelihood Estimation Method

Maximum Likelihood Estimation is a statistical technique used to 
estimate the parameters of a model by maximizing the likelihood function, 
which represents the joint probability distribution of the observed data 
given the parameters. The fundamental principle behind MLE is to find 
the parameter values that make the observed data most probable.DDE, P
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The OLS method estimates parameters by minimizing the sum of the 
squared residuals (differences between observed and predicted values). 
In contrast, MLE estimates parameters by maximizing the likelihood 
function, which is the probability of observing the sample data given the 
parameters. The key difference lies in the optimization criterion: OLS 
minimizes residuals, while MLE maximizes likelihood.

While the OLS relies heavily on assumptions related to the linear 
regression model, such as linearity, homoscedasticity (constant 
variance), and normality of error terms. MLE is more flexible in terms 
of the distribution of the error terms, allowing for models where the 
error terms are non-normal or heteroscedastic, or cases when the 
dependent variable is binary or count data. MLE provides consistent, 
asymptotically efficient, and normally distributed estimates under 
weaker assumptions than OLS, making it more robust and flexible. 
MLE only assumes that the specified model is the correct model with 
constant and finite parameters, and that the underlying the data are 
independent and identically distributed (i.i.d.).

Following are the steps for estimating the parameter values of the 
specified model using the Maximum Likelihood Estimation method:

 	 ➢ Specify the probability distribution of the data.

 	 ➢ Write down the likelihood function, L(θ|y), and the log-likelihood 
function, lnL(θ|y).

 	 ➢ Take the derivative of the log-likelihood function with respect to 
the parameters, θ.

 	 ➢ Set the derivative to zero and solve for θ to find the MLE estimates, 
θ̂.

The likelihood function, L(θ|y), is the joint probability distribution of 
the observed data, y, given the parameters, θ. The log-likelihood function, 
lnL(θ|y), is often used instead for computational convenience. The MLE 
estimates, θ̂, are the values of θ that maximize the log-likelihood function. 
Consider a simple linear regression model:

	 ( )0 1 ,    ~ 0, 2y x where Nβ β ε ε σ= + +

Given a sample of data ( ) ( ) ( ){ }1 1 2 2, , , , ..., , n nx y x y x y , the likelihood function 
is:
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Taking the logarithm, we get the log-likelihood function:

Taking the derivative with respect to β0, β1, and σ2, setting them to 
zero, and solving for β0, β1, and σ2, we get the MLE estimates. Once the 
parameters are estimated, their statistical significance and the goodness-
of-fit of the model can be evaluated through tests like the likelihood ratio 
test.

Consider an example: suppose that the marks scored by students in an 
introductory course in econometrics are distributed normally. A random 
sample of ten students had the following scores (out of a maximum of 
200):

Student 1 2 3 4 5 6 7 8 9 10

Score (X) 113 127 159 138 180 117 131 149 152 171

We need to identify the maximum likelihood function in order to 
obtain the maximum likelihood estimate of the mean score. Since the 
scores are distributed normally, the probability density function of the 
mean score will be:

( ) ( )2
2

2

–1; ,   ,   0
22
i

i

x
f x exp for x and

µ
µ σ µ σ

σσ π

 
= − −∞ < < +∞ < < ∞ 

  

Therefore, the likelihood function will be:

( ) ( ) ( )2
2

2
1

1, 2
2

nn
n

i
i

L exp xµ σ σ π µ
σ

−−

=

 
= − − 

 
∑

   0for andµ σ−∞ < < +∞ < < ∞

Using the maximizing procedure outlined earlier, we get the MLE estimator 
of μ as:

1

ˆ 1 n

i
i

X X
n

µ
=

= =∑
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Thus, the sample yields the maximum likelihood estimate of the mean 
score as:

( ) 5ˆ 1 113 127 ... 171 144.
10

µ = + + + =

The Maximum Likelihood Estimation method is a powerful and 
flexible tool in econometrics, providing robust and efficient estimates 
under weaker assumptions than the Ordinary Least Squares method. 
However, MLE has its own set of limitations: it may not provide accurate 
estimates for small samples, it may be computationally intensive, especially 
for complex models, and it may be biased if the model is mis-specified. 
Also, like other estimation methods, MLE can be prone to overfitting, 
especially in models with a large number of parameters relative to the 
sample size. Applying MLE requires careful specification of the probability 
distribution and is, generally, computationally intensive.

2.1.7  Other Statistical-Econometric Models

While linear regression is the workhorse of statistical analyses, 
there are several other advanced modeling techniques with general and 
specialized application:

1.	 Generalized Linear Models (GLMs): GLMs extend linear 
regression to handle dependent variables that don’t neatly follow a 
normal distribution. They do this through using a link function that 
connects the linear part of the model to the mean of the dependent 
variable’s distribution and specifying the probability distribution 
(e.g., binomial, Poisson, gamma). Examples include:

a.	� Logistic Regression: For binary outcomes (e.g., employed 
vs. unemployed, purchase vs. no purchase). Uses a logit link 
function and a binomial distribution.

b.	� Poisson Regression: For count data (e.g., the number of 
accidents in a month, number of patents a firm files). Employs 
a log link function and the Poisson distribution.

2.	� Time Series Models: Specialize in analyzing data with a temporal 
component, where the order of observations matter. Account for 
trends, seasonality, and potential autocorrelation (correlation 
between a variable and its past values). Examples are:
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a.	� ARIMA (Autoregressive Integrated Moving Average): Models 
a variable as a function of its own past values and past errors.

b.	� ARCH/GARCH (Autoregressive Conditional 
Heteroskedasticity): Focus on modeling changing variance 
(volatility) over time, often seen in financial data.

3.	� Limited Dependent Variable Models: Handle situations where the 
dependent variable is not continuous across all values, e.g., it might 
be binary, censored, or truncated. Examples are:

a.	� Probit Regression: Similar to logistic regression but uses the 
cumulative standard normal distribution function as its link.

b.	� Tobit Regression: For data where a portion of observations 
clump at a certain value (frequently zero). For instance, 
modeling charitable donations (many will be zero, some will be 
positive amounts).

4.	� Discrete Choice Models: Model decisions individuals or firms 
make among a set of alternatives. Based on utility maximization 
concepts. Examples include:

a.	� Multinomial Logit: Used when choices are unordered (e.g., 
choice of transportation mode: car, bus, train).

b.	� Conditional Logit: Useful when choices can be grouped (e.g., 
picking a specific brand within a product category)

5.	� Systems of Equations: Allow modeling several relationships 
simultaneously, where the dependent variable in one equation 
might be an independent variable in another. Accounts for 
interdependence between outcomes. Examples are:

a.	� Seemingly Unrelated Regressions (SUR): A system of 
seemingly separate regression equations where the error terms 
might be correlated across equations.

b.	� Simultaneous Equation Models: Explicitly models structural 
feedback loops, where variables can influence each other mutually.

While OLS and MLE are cornerstones of regression analysis, several 
other estimation methods deserve consideration:

1.	 Method of Moments (MM): Equates theoretical moments (e.g., 
mean, variance) of the population with their sample counterparts. 
Parameters are estimated by solving the resulting system of 
equations. Example: consider a simple model Y = βX + ε. The first 
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population moment is E[Y] = βE[X]. Its sample equivalent is Y
-
 = βX

-
.

Solving this equation gives an estimate for β.

a.	 Pros: Can be computationally simpler than MLE.

b.	� Cons: Often less efficient (higher variance) than MLE. May not 
be feasible if the number of moments exceeds the number of 
unknown parameters.

2.	 Bayesian Estimation: A fundamentally different philosophical approach. 
It treats parameters as random variables with prior distributions (beliefs 
about the parameter before seeing the data). The posterior distribution 
(updated belief after incorporating data) is derived using Bayes’ Theorem. 
It involves specifying the prior distribution, the likelihood function, 
and calculating the posterior distribution. Estimates are often based on 
features of this posterior, like the mean.

a.	� Pros: Incorporates prior knowledge in a natural way. Provides a 
full probabilistic characterization of the parameters.

b.	� Cons: Computationally intensive, particularly with complex 
models. Results can be sensitive to prior distribution choice.

3.	� Robust Regression: Methods designed to be less sensitive to 
outliers or deviations from the assumptions of traditional regression 
models. It employs several techniques, such as:

a.	� M-Estimators: Minimize a function that down-weights the 
influence of outliers.

b.	� Least Absolute Deviations (LAD): Minimizes the sum of 
absolute residuals rather than squared residuals.

The choice of method employed depends on the specific dataset, 
research questions, and the theoretical underpinnings of the model.

2.1.8  Summary

Economic models provide a theoretical framework, while statistical 
models are tools for empirical testing of these theories using data. 
Econometric models include an error term to account for the randomness 
and other factors not captured by the model.

Regression analysis is a statistical method used to explore the relationship 
between a dependent variable and one or more independent variables. It is 
versatile and can be applied to various economic questions, like the impact of 
education on earnings or factors influencing consumer spending.
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Simple Linear Regression is the basic form of regression that assumes a 
linear relationship between the dependent and independent variables. It’s 
useful for understanding the impact of changes in one variable on another. 
Multiple Regression Analysis is an extension of simple linear regression 
that includes several independent variables to provide a more complex 
and nuanced understanding of economic dynamics.

Parameters are estimated using various methods with each method 
having its own assumptions and limitations. Ordinary Least Squares 
(OLS) is a method that estimates the parameters of a regression model by 
minimizing the sum of squared residuals. Maximum Likelihood Estimation 
(MLE) method estimates parameters by maximizing the likelihood of 
observing the sample data, given the parameters.

Beyond the linear model, there are logistic regressions for binary 
outcomes, time series models for data over time, and more complex models 
like ARIMA and GARCH for specific types of dependency in data.

Issues such as multicollinearity, heteroscedasticity, and autocorrelation 
can affect the reliability of regression models. Regression analysis requires 
clean data, appropriate models, and robust statistical techniques.

2.1.9  Keywords

Regression Analysis: A statistical approach for examining the 
relationships between variables, used to model and predict the 
association between a dependent variable and one or more independent 
variables.

Simple Linear Regression: Assumes a linear relationship between the 
dependent and independent variables. The linear regression equation 
is given by y = c + mx, which helps quantify the impact of changes in 
the independent variable on the dependent variable.

Multiple Regression Analysis: Extends simple linear regression by 
incorporating multiple independent variables to explain the dependent 
variable, allowing for a more detailed exploration of complex economic 
relationships.

Ordinary Least Squares (OLS): A method that estimates regression 
model parameters by minimizing the sum of squared differences 
between the observed and predicted values.
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Maximum Likelihood Estimation (MLE): Estimates parameters by 
finding the values that maximize the likelihood of the observed data.

Economic vs. Statistical Model: Economic models offer theoretical 
frameworks, while statistical models apply these theories to empirical 
data to test relationships.

Error Term: Represents unexplained variance in the dependent 
variable not accounted for by the independent variables in the model.

Estimating Parameters: Involves selecting the best method based on 
the model’s characteristics, such as OLS or MLE, and then using the 
chosen method to derive estimates.

Model Specification and Diagnostics: Critical for ensuring the 
reliability of regression models. This includes proper data preparation, 
exploratory data analysis, model fitting, and diagnostic checks to 
address any violations of assumptions.

2.1.10  Self-assessment Questions

1.	 What is regression analysis and what is its primary purpose in 
econometrics?

2.	� Define a dependent variable and give an example in the context of 
regression analysis.

3.	� What are independent variables and how do they function in a 
regression model?

4.	� What does the term linear relationship imply in the context of 
simple linear regression?

5.	� Explain the equation y = c + mx in the simplest terms, identifying 
what each component represents.

6.	� How does multiple regression analysis differ from simple linear 
regression?

7.	� Describe the Ordinary Least Squares (OLS) estimation method and 
its objective.

8.	� What is the Maximum Likelihood Estimation (MLE) method and 
when is it used?

9.	� Contrast economic models with statistical models in the context of 
econometrics.

10.	� What is the error term in a regression model and what does it 
account for?
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11.	� Why is it important to ensure that the assumptions of regression 
analysis are met?

12.�	 List the key assumptions that must hold true for linear regression to 
produce reliable results.

13.	 What steps would you take to prepare data for regression analysis?

14.	� What are some of the diagnostic checks that should be performed 
after fitting a regression model?

15.	� How can regression analysis be applied in the real world? Provide at 
least two examples.

2.1.11  References

1.	 Introduction to Econometrics by James H. Stock and Mark 
W. Watson: This book is well-suited for those who have a grasp 
of the conceptual part of economics and are ready to delve into 
econometrics. It’s recommended to have a background in statistics 
before tackling this book, as it can be quite dense for complete 
beginners.

2.	� Econometric Analysis of Cross Section and Panel Data by Jeffrey 
M Wooldridge: This book is better suited for advanced students, 
such as those in a Ph.D. program. It’s an excellent reference for 
understanding cross-section and panel data methods in detail.

3.	� Microeconometrics Using Stata by A. Colin Cameron and Pravin 
K. Trivedi: Ideal for those looking to bridge the gap between 
econometric theory and Stata application, this book provides 
detailed instructions on Stata commands within the context of 
econometric analysis.

4.	 Basic Econometrics by Damodar Gujarati: Known for its simple 
approach and explanation of econometrics without heavy 
mathematical focus. This book is beneficial for those taking 
economics courses and aims to blend current research with 
traditional econometric theory.

5.	 Econometric Analysis by William H. Greene: This is one of the 
most prominent textbooks for graduate-level econometrics and 
offers a hands-on approach to learning fundamental econometric 
techniques and models, making it an essential reference for 
researchers and practitioners.
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Lesson 2.2  – Multiple Linear Regression

Structure

2.2.1  Introduction to Multiple Regression Analysis

2.2.2  Estimation of Model Parameters in Multiple Regression

2.2.3  OLS Estimator is BLUE

2.2.4  Interpretation of Coefficients in a Multiple Regression Model

2.2.5  Summary

2.2.6  Keywords

2.2.7  Self-assessment Questions

2.2.8  References

2.2.1  Introduction to Multiple Regression Analysis

Multiple regression analysis is a statistical technique used to analyze 
the relationship between multiple independent (predictor or explanatory) 
variables and a single dependent (response or outcome) variable. It extends 
simple linear regression, which analyzes the relationship between two 
variables, to a more complex scenario where the effect of multiple factors 
on a particular outcome is examined.

By including multiple independent variables, we can create a more 
comprehensive and realistic model to make predictions or understand the 
relationships between variables. This technique is crucial in economics, 
as well as in various other fields like finance, healthcare, marketing, and 
social sciences, where understanding multifactorial influences is essential. 
In economics and beyond, multiple regression analysis is used in numerous 
contexts:

 	 ➢ Economics

 	 ➢ Predicting house prices (dependent variable) based on various 
factors such as the size of the house, location, number of 
bedrooms, and age of the house (independent variables).

 	 ➢ Estimating the impact of various factors like interest rates, 
consumer confidence, and unemployment rates on economic 
indicators such as GDP growth.
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 	 ➢ Investigating how factors like education level, experience, 
gender, location, industry, etc., collectively influence an 
individual’s wage.

 	 ➢ Modeling how income, prices, interest rates, and household 
demographics might affect consumer spending.

 	 ➢ Determining the impact of company financials, macroeconomic 
indicators, and market sentiment on a stock’s price.

 	 ➢ Predicting a product’s demand based on its price, advertising 
expenditure, competitor prices, and seasonal factors.

 	 ➢ Marketing

 	 ➢ Determining the impact of advertising spending on different 
platforms (TV, radio, social media) on total sales (dependent 
variable).

 	 ➢ Evaluating how various marketing activities (advertising spend 
across different media, pricing strategies, etc.) influence sales 
or brand awareness.

 	 ➢ Education

 	 ➢ Analyzing the factors influencing students’ test scores 
(dependent variable), such as hours of study, attendance, and 
parental involvement (independent variables).

 	 ➢ Finance

 	 ➢ Analyzing the influence of different financial ratios and market 
conditions on stock prices or company valuation.

 	 ➢ Medicine and Healthcare

 	 ➢ Understanding how different demographic, lifestyle, and 
medical variables affect health outcomes.

 	 ➢ Determining the influence of age, lifestyle, and genetics on 
disease risk.

 	 ➢ Sociology

 	 ➢ Studying how various factors affect crime rates, educational 
outcomes, or voting behaviors.

 	 ➢ Environmental Science

 	 ➢ Modeling pollution levels as a function of industrial activity, 
population density, and weather patterns.
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Multiple regression makes the same set of assumptions as the simple 
linear regression but comes with an added complication of multicollinearity-
potentially high correlation among independent variables in the model. 
Let’s take an example to understand the formulation of a multiple regression 
model—how education, experience, and gender influence wages. In this 
case:

Dependent Variable (Y): Wage

Independent Variables (X’s):

X1 
= Years of Education

X2 = Years of Work Experience

X3 = Gender (represented as dummy variable)

Then this study model can be represented as:

Y = β0 + β1X1 + β2 X2 + β3 X3 + ϵ

Where:

β0: The intercept (the expected value of Y when all independent 
variables are zero)

β1, β2, β3: The slope coefficients; represent the expected change in Y 
for a one-unit increase in the corresponding independent variable, 
holding all other independent variables constant.

ϵ: The error term (unobserved factors that affect Y)

This form can be extended to include any number of independent or 
predictor variables as needed in the study:

Y = β0 + β1 X1 + β2 X2 +... + βnXn + ϵ

The standard form of a multiple regression model is essentially the 
equation given above. It succinctly expresses the linear relationship 
between the dependent variable and multiple independent variables. Since 
a typical dataset for such studies involves a large number of cases (e.g., 
number of respondents in a survey), writing the model equation for each 
case becomes unwieldly very rapidly. For example, the proposed study 
outlined above, a researcher will typically collect data from hundreds 
(even thousands) of individuals. The model will thus look like:

Yi = β0 + β1 Xij + β2 Xij + β3 Xij + ϵi
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Where the subscripts (i, j) represent data of ith variable collected from 
jth individual. Expanded, for n number of respondents, as:

1 0 1 11 2 21 3 31 1Y X X X= β +β +β +β +ò

2 0 1 12 2 22 3 32 2Y X X X= β +β +β +β +ò
.
.
.

0 1 1 2 2 3 3n n n n nY X X X= β +β +β +β +ò

Thus, X22 would mean years of experience data for the second 
respondent. It is easy to see that writing hundreds of such datalines is both 
cumbersome and unweildly. It also complicates calculations for estimating 
the values of the parameters. Situation componds when the number of 
independent variables in the model is also large. In such cases, it is much 
more convenient to use the matrix notations for expressing the regression 
equation. Use of matrices not only compresses data representation but also 
eases parameter estimation.

This can be visualized as a multidimensional space where each 
dimension represents one of the variables in the model. The multiple 
regression model would be represented by a hyperplane (a line in two 
dimensions, a plane in three dimensions, and so on) that best fits the 
data points in this multidimensional space. The coefficients (β values) 
determine the orientation and position of this hyperplane, optimizing the 
prediction of the outcome variable (Y) based on the predictor (X) variables 
in the model.

The goal of multiple regression is to estimate the parameters (βs) and 
examine their (i) significance (are the independent variables statistically 
significant in explaining the dependent variable?), direction (is the 
relationship positive or negative?), and magnitude (how big of an effect 
does each independent variable have on the dependent variable?).
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2.2.2  Estimation of Model Parameters in Multiple Regression

We will use matrix algebra to estimate the model parameters of a simple 
linear regression relationship with two variables:

y1 = β0 + x1β1 + e1 
y2 = β0 + x2β1 + e2 

.

.

.
yn = β0 + xnβ1 + en 

Since the result will be in the form of matrix equations, it can be easily 
generalized for use in multiple regression models. The model above can be 
represented in matrix algebra form as:

1 1 1

2 2 2

0 1

1
1

. . ..

. . ..

. . ..
1n n n

y x e
y x e

b

y x e

β β

      
      
      
      

= + +      
      
      
      
           

Or

1 1 1

2 2 2

0

1

1
1

. . . .

. . . .

. . . .
1n n n

y x e
y x e

y x e

β
β

     
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     
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We can write the expressions above in a more compact form by constructing 
vectors of N-dimensions:

1 1 1

2 2 2

1 2

1
1

. . ..

. . ..

. . ..
1n n n

y x e
y x e

y x e
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      
      
      
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y x x e
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And, thus, rewrite this as:

1 0 2 1= + +y x x eβ β

This can be further compacted if we create:

( ) β
β

 
 
 
   

= = =   
   
 
 
  

1

2

0
1 2

1

1
1

. .
       

. .

. .
1 n

x
x

and

x

X x x β

Using this notation, we can rewrite as:

β
β
 

 β + β = =  
 

x x X0
1 0 2 1 1 2

1

x x β

Thus, the standard form of a multiple regression model, comprising n 
cases and k variables, using the matrix notation is:

= +ey  X  β

Where:

y can be a n x 1 matrix of the dependent variable,

X can be a n x (k + 1) matrix containing a column of ones (for the intercept) 
and the k independent variables,

β can be a (k + 1) x 1 matrix containing the intercept (β0) and the regression 
coefficients (β1, β2,…, βk), and

e can be a n x 1 matrix of the error terms or residuals.

Now, recall the normal equations derived earlier by partially 
differentiating the sum of squared errors of a simple linear regression 
model:

0 1i iNb x b y+∑ = ∑

2
0 1i i i ix b x b x y∑ +∑ = ∑

These can be rewritten in the matrix algebra form as:

0
2

1

i i

i i i i

N x yb
x x x yb

∑ ∑    
=    ∑ ∑ ∑    
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Using the exposition above, it follows that:

1

2

2
1 2

1
1

1 . .1 1 . . .
. .. . .
. .

1

i

i i n

n

x
x

N x
x x xx x

x

 
 
 
 ∑   

= =    



′ ∑ ∑     
 
 
 

X X

  

1

2

1 2

1 .1 1 . . .
.. . .
.

i

i i n

n

y
y

y
x y xx x

y

 
 
 
 ∑   

= =     ∑     
 
 
  

′X y

0

1

b
b
 

=  
 

b

With these reformulations, the matrix version of the normal equations can 
be re-written as:

=X'Xb X'y

To solve for b, we pre-multiply both sides with the inverse of XʹX to get:

( ) ( )1 1− −=′ ′ ′ ′X X X Xb X X X y

Which gives the expression for matrix of parameter estimates:

( ) 1−= ′ ′b X X X y

This is the matrix version of the formula for least squares estimators 
of multiple linear equation parameters— a result of central importance in 
econometrics.

Let’s consider a numerical example to better understand the calculations 
involved. We model a simplified relationship between marks scored in 
an econometric examination (the outcome variable) and hours spent on 
preparing for the test (the predictor variable). We gather the values for ten 
students as:

yi = {50, 20, 30, 20, 0}

xi = {6, 4, 2, 0, 0}DDE, P
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We model the relationship as:

y = Xβ + e with e~N(0, σ2Ii)

We have:

1 6 50
1 4 20

  1 2 30
1 0 20
1 0 00

X and y

   
   
   
   = =
   
   
      

Then:
1 6
1 4

1 1 1 1 1
1 2

6 4 2 0 0
1 0
1 0

X X

 
 
  
 =  
  
 
  

′

5 12
12 56
 

=  
 

therefore, the inverse of this matrix is:

( ) 1 0.41 0.10
'

0.10 0.04
X X − − 

=  − 

Moreover, we also compute:
50
20

1 1 1 1 1
30

6 4 2 0 0
20
00

X y

 
 
  
 =  
  
 
  

′

        

120
440
 

=  
 

This gives us the final result:

( ) 1 10.59
'

5.59
X X X y b−  

= ′ =
 

Thus, the intercept (β0) is estimated as b0 = 10.59 and the slope (β1) 
is estimated as b1 = 5.59. The estimated regression equation becomes: yi = 
10.59 + 5.59xi, presented in the graph below.
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The intercept value suggests that a student is likely to score 10.59 
marks even with no time spent on preparing for the test, while every one 
hour spent on preparation increase the marks by 5.59, on an average.

2.2.3  OLS Estimator is BLUE

We now have the tools to show that the ordinary least squares 
estimator is best and unbiased among all linear estimators (Best Linear 
Unbiased Estimator). It refers to the properties of the OLS estimator when 
applied to a linear regression model under certain assumptions. A detailed 
explanation of each component of BLUE follows:

This is the matrix version of the formula for least squares estimators 
of multiple linear equation parameters— a result of central importance in 
econometrics.

Let’s consider a numerical example to better understand the calculations 
involved. We model a simplified relationship between marks scored in 
an econometric examination (the outcome variable) and hours spent on 
preparing for the test (the predictor variable). We gather the values for ten 
students as:

B - Best: Also known as the Gauss-Markov theorem–the OLS estimator 
is considered the “best” because it has the smallest variance among all 
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linear unbiased estimators. In other words, it is the most precise or efficient 
estimator. Consider a simple linear model: y = Xβ + e. Let’s define a linear 
estimator other than the OLS as:

	

* *

1

N

i i
i

b a Y
=

=∑

Let us also assume: * 1
i i i ia a c c

N
= + = + . Thus,

* *

1

N

i i
i

b a Y
=

=∑

1

1N

i i
i

c Y
N=

 = + 
 

∑

1 1

1N N

i i i
i i

Y c Y
N= =

= +∑ ∑

1

N

i i
i

b c Y
=

= +∑

Then

*

1

N

i i
i

E b E b c Y
=

   = +    
∑

                   
[ ] [ ]

1

N

i i
i

E b c E Y
=

= +∑

Since, E[b] = β (shown later), we have:

	

Now let’s assume that b* is an unbiased estimator; this implies that: ∑N
i=1ci 

= 0. Then:

( )* *

1

N

i i
i

var b var a Y
=

 
=  

 
∑

1

1N

i i
i

var c Y
N=

  = +  
  

∑

( )
2

1

1N

i i
i

c var Y
N=

 = + 
 

∑
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=

 = σ + 
 

∑
2

2

1

1N

i
i

c
N

=

 = σ + + 
 

∑2 2
2

1

1 2N

i i
i

c c
NN

=
= =

 
= σ + + Σ 

 
∑ ∑2 2

12
1 1

1 2N N
N

i i i
i i

c c
NN

 = σ + + 
 

2 21 0 iNc
N

( )σ
= + σ

2
2 2

iNc
N

( ) ( )= + σ2 2
ivar b Nc

This implies that variance of the newly defined estimator is greater 
than that of the OLS estimator:

var(b*) > var(b)

In other words, the OLS estimator has the least variance among all 
linear estimators.

L - Linear: The OLS estimator is a linear function of the data. This means 
that the estimated coefficients are a linear combination of the observed 
values of the dependent and independent variables. Since,

1

N
i

i

Yb
N=

=∑

    1

1N

i
i

Y
N=

=∑

    
1 2

1 1 1
NY Y Y

N N N
= + + +

    1

N

i i
i

a Y
=

=∑

Where 1
ia

N
 = 
 

 and act as ‘weights’ (making b the weighted average) 
thus expressing b as a linear combination of Y values.

U - Unbiased: An estimator is unbiased if its expected value is equal to 
the true value of the parameter it is estimating. In the context of OLS, this 
means that the expected value of the estimated coefficients is equal to the 
true coefficients of the population regression line.
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Does the estimated value of the parameter equal the actual value of the 
parameter? This is equivalent of asking whether a sample statistic equals 
population parameter? This question cannot be answered with absolute 
certainty; we can only calculate the probability of this being the case. 
Nevertheless, a sample statistic is expected to be equal to the population 
parameter given that the sampling process and the estimation procedure 
are unbiased. Thus:

[ ]
1

N
i

i

YE b E
N=

 
=  

 
∑

           
[ ] [ ] [ ]1 2

1 1 1
NE Y E Y E Y

N N N
= + + +

           
= β+ β+ + β

1 1 1
N N N  

           

 = × β 
 

1 N
N

           = β  �E b

E - Estimator: An estimator is a rule or method used to infer the value 
of an unknown parameter in a statistical model based on observed data. 
In OLS, the estimator is used to estimate the coefficients of the linear 
regression model.

The BLUE properties of the OLS estimator hold under certain 
assumptions, including linearity, independence of errors, homoscedasticity, 
normality of errors, and no perfect multicollinearity. If these assumptions 
are met, the OLS estimator is the best (in terms of having the smallest 
variance) linear unbiased estimator of the coefficients of the linear 
regression model. We will examine in a later lesson, what happens if we 
relax these assumptions or if these assumptions are violated in the data 
collected as sample.

2.2.4 � Interpretation of Coefficients in a Multiple Regression Model

The parameter estimates in an Ordinary Least Squares (OLS) regression 
model represent the estimated coefficients of the linear relationship 
between the dependent variable and the independent variables. To 
interpret a multiple regression model, we focus on:

 	 ➢ Intercept (β0): The intercept is the estimated value of the dependent 
variable when all the independent variables are equal to zero. It 
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represents the baseline value of the dependent variable when the 
effects of all independent variables are absent.

 	 ➢ Slope Coefficients (β1, β2, …, βk): The slope coefficients represent 
the estimated change in the dependent variable for a one-unit 
increase in the corresponding independent variable, holding all 
other independent variables constant. A positive slope coefficient 
indicates that the dependent variable increases as the independent 
variable increases, while a negative slope coefficient indicates 
that the dependent variable decreases as the independent variable 
increases.

 	 ➢ Significance of Coefficients: The significance of the coefficients 
is typically evaluated using hypothesis testing, such as t-tests or 
F-tests. The p-value associated with each coefficient indicates the 
probability of observing the estimated coefficient value by chance, 
assuming that the true coefficient is zero. A small p-value (typically 
less than 0.05) indicates that the coefficient is statistically significant 
and unlikely to be zero.

 	 ➢ Standard Errors: The standard errors of the coefficients provide a 
measure of the precision of the estimates. A smaller standard error 
indicates that the estimate is more precise, while a larger standard 
error indicates that the estimate is less precise. The standard errors 
are used to calculate confidence intervals for the coefficients, which 
provide a range of plausible values for the true coefficient.

The parameter estimates of OLS provide information about the 
magnitude, direction, and significance of the relationship between the 
dependent variable and each independent variable, holding all other 
independent variables constant. The significance of the coefficients and 
the standard errors provide information about the reliability and precision 
of the estimates.

2.2.5  Summary

Multiple Linear Regression (MLR) is a fundamental statistical 
technique that allows us to understand and predict the behavior of one 
dependent variable based on the values of two or more independent 
variables. This method extends the concept of simple linear regression, 
which only considers a single predictor, to a more complex scenario where 
multiple factors simultaneously influence the outcome.
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The core of MLR lies in its ability to model the linear relationship 
between the dependent variable and several independent variables. 
By doing so, it provides a nuanced understanding of how changes in 
predictor variables are associated with changes in the outcome variable. 
This modeling is crucial for fields such as economics, social sciences, and 
natural sciences, where multiple variables often interact to influence the 
phenomena being studied.

A key aspect of MLR is the estimation of coefficients through the 
Ordinary Least Squares (OLS) method. OLS is designed to minimize 
the sum of the squared differences between the observed values and 
the values predicted by the model. This approach ensures that the 
regression line is the best fit for the data, capturing the essential patterns 
without being overly influenced by outliers. The coefficients obtained 
from OLS estimation offer insights into the strength and direction of 
the relationship between each independent variable and the dependent 
variable, allowing for precise interpretations of how each factor affects 
the outcome.

Interpreting these coefficients is a critical skill in MLR. Each 
coefficient indicates the expected change in the dependent variable for a 
one-unit change in the corresponding independent variable, holding all 
other variables constant. This interpretation helps in understanding the 
individual impact of each predictor on the outcome, providing a basis for 
informed decision-making and policy formulation.

Moreover, MLR incorporates matrix algebra for efficient computation 
of regression coefficients, especially when dealing with a large number of 
variables. This mathematical framework simplifies the estimation process, 
making it more accessible and manageable.

Another important component of MLR is the assessment of the 
model’s significance, including the statistical significance of individual 
coefficients, which helps in determining whether the relationships 
observed in the sample data are likely to exist in the broader population. 
The direction (positive or negative) and magnitude of the coefficients are 
also analyzed, offering deeper insights into the nature of the relationships 
between variables.

In practice, MLR is not just about fitting a model to data; it also involves 
diagnostic checks to ensure the model’s assumptions are met, including 
linearity, independence, homoscedasticity, and normality of residuals. 

DDE, P
on

dic
he

rry
 U

niv
ers

ity



Notes

86

Addressing these assumptions is crucial for the validity and reliability of 
the regression analysis.

2.2.6  Keywords

Multiple Linear Regression (MLR): A statistical technique for 
predicting the outcome of a dependent variable based on multiple 
independent variables.

Ordinary Least Squares (OLS): The most common method for 
estimating the coefficients in a regression model, minimizing the sum 
of squared residuals.

Coefficients: Values estimated by the regression model, indicating the 
magnitude and direction of the relationship between each independent 
variable and the dependent variable.

Dependent Variable: The outcome variable that the model aims to 
predict or explain, influenced by various independent variables.

Independent Variables: Predictor variables used in the model to 
explain variation in the dependent variable.

BLUE (Best Linear Unbiased Estimator): A property of OLS 
estimators that are the best (in terms of lowest variance) among all 
unbiased linear estimators.

Intercept: The expected value of the dependent variable when all 
independent variables are zero.

Slope Coefficients: Represent the expected change in the dependent 
variable for a one-unit increase in the corresponding independent 
variable, holding others constant.

Matrix Algebra: A mathematical framework used in MLR for efficient 
computation of regression coefficients when dealing with multiple 
variables.

Statistical Significance: An assessment of whether the observed 
relationship between variables is due to chance or represents a real 
effect.

2.2.7  Self-assessment Questions

1.	 Show that the estimated least squares line, yi
^ = b0 + xib1, passes 

through the point (x–, y–).
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2.	 Prove that:

( )

2

0 122
i i i i

i i

x y x yb y b x
N x x
Σ Σ −Σ

= = −
Σ − Σ

( )
( )( )

( )1 2 22
i ii i i i

i i i

x x y yN x y x yb
N x x x x

Σ − −Σ −Σ Σ
= =

Σ − Σ Σ −

3.	 Prove that:

	

( ) ( )

( )

2

22
1

22

i i i i

i i

i i i i

i i

x y x y
N x x

N x y x y
N x x

−

 Σ Σ −Σ
 

Σ − Σ = =  Σ −Σ Σ 
 Σ − Σ 

′ ′b X X X y

4.	 Show that the sum of squared errors can be written as:

( ) ( ) ( )β
=

− = − −∑ 'y x y x2

1

N

i
i

y β β

                                = ′ +′− ′y y x y x x22β β

5.	 Let bwt be a weighted estimator with unequal weights for sample 
observations, Y1, Y2, Y3, drawn from a normal population with a 
mean β and variance σ2 such that:

	
= + +1 2 3

1 1 1
2 3 6wtb Y Y Y

	 Show that bwt is a linear, unbiased estimator.
6.	 For a simple linear statistical estimation model, show that sum of 

errors will always sum to zero. That is:

( )
=

− =∑
1

0
N

i
i

y b

7.	 Randomly selected ten households in a city had the following 
income and expenditure on clothes (in rupees thousands):

Income 30 20 40 33 13 15 38 26 43 35

Expenditure 9 7 11 8 4 5 10 8 10 9

	� Estimate the expenditure–income regression line. By what amount 
does expenditure on clothes increase if the income increases by 
Rs.1000?
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8.	� Estimate the demand function of cotton candy from the price and 
quantity bought data below:

Price 16 18 14 10 12 7 10 6 9 10

Quantity 150 100 200 275 250 300 280 325 260 280

	 Forecast the demand when the price is Rs.15.

9.	� Assuming a linear relation Y between X (outcome variable) and  
(predictor variable), for a sample of 11 observations:

     = 520.20X

      = 220.80Y

   ∑ =2 3134543iX

∑ =1296836i iX Y

 ∑ =2 539512IY

	� Estimate the linear regression line and interpret the parameter es-
timates.

10.	 Following is the data for Central Goods and Services Tax (CGST) 
collection (in rupees thousand crores) for the last ten years:

Year 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023

CGST 150 160 100 230 250 300 80 140 235 320

	 Using OLS method, estimate the slope of the CGST regression line.

2.2.8  References

1.	 Introduction to Linear Regression Analysis by Douglas C. 
Montgomery, Elizabeth A. Peck, and G. Geoffrey Vining. This 
textbook is a staple in regression analysis, offering a thorough 
overview of the subject. It covers the basics of simple linear regression 
and extends to multiple regression, diagnostics, and the application 
of regression analysis in various fields. Its clear explanations and 
practical approach make it an excellent choice for students.

2.	 Applied Linear Statistical Models by Michael Kutner, Christopher 
Nachtsheim, John Neter, and William Li. This comprehensive 
text covers a wide range of topics, including simple and multiple 
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linear regression, analysis of variance (ANOVA), and non-linear 
models. It’s known for its applied approach, with numerous real-
world examples and case studies that help students understand the 
practical applications of regression analysis.

3.	 Applied Regression Analysis and Generalized Linear Models 
by John Fox. John Fox’s textbook is geared towards students and 
researchers looking to understand the theory and application of 
regression analysis, including linear, multiple linear, and generalized 
linear models. The book emphasizes the social science perspective, 
making it particularly useful for students in fields like economics, 
sociology, and political science.

4.	 Econometric Analysis by William H. Greene. Greene’s textbook 
is a classic in the field of econometrics, providing comprehensive 
coverage of theoretical and applied aspects of econometric methods, 
including multiple regression analysis. It’s well-suited for students 
with an interest in the economic applications of regression and those 
looking for a deeper understanding of the statistical foundations.

5.	 Statistics and Data Analysis for Financial Engineering by David 
Ruppert. This book is designed for students interested in the 
financial applications of statistical methods, including regression 
analysis. It covers a broad range of topics, from basic statistical 
concepts to more complex models like multiple regression and 
time series analysis, all with a focus on applications in financial 
engineering.
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UNIT – III :  THE PROBLEM OF INFERENCE

Lesson 3.1 – Evaluation of the Least Squares Estimates

Structure

3.1.1	 Evaluating the Reliability of the Estimates

3.1.2	 Criteria for Assessing the Reliability

3.1.3	 Evaluating the Overall Goodness of Fit

3.1.4	 Testing the Significance of the Parameter Estimates

3.1.5	 Testing the Equality of Two regression Coefficients

3.1.6	 Testing the Overall Significance of the Sample Regression

3.1.7	 Summary

3.1.8	 Keywords

3.1.9	 Self-assessment Questions

3.1.10	 References

3.1.1  Evaluating the Reliability of the Estimates

The reliability of least squares estimates refers to the consistency and 
precision of the estimated regression coefficients in a linear regression 
model. It reflects the degree of confidence that these estimates are accurate 
and measure the true underlying relationship between the dependent and 
independent variables in a linear regression model.  When we speak of the 
reliability of least squares estimates, we are essentially asking:

 	 ➢ How much do our estimates change if we have slightly different 
data?  If small changes in our data lead to drastically different 
estimates, we wouldn’t consider those estimates reliable.

 	 ➢ How well do our estimates capture the true underlying parameters 
of the model?  Even with consistent estimates, they might not 
accurately reflect the real-world relationships we’re trying to model.

This concept is crucial in statistics and econometrics because it 
influences the interpretability and applicability of regression analysis 
results. To assess and evaluate the reliability of least squares estimates, 
several criteria and methods are employed, including the coefficient of 
determination (R²), standard errors of the estimates, confidence intervals, 
hypothesis testing, and the analysis of residuals.
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3.1.2  Criteria for Assessing the Reliability

Reliability of a regression model can be judged on three set of criteria: 
a priori theoretical justification of the model, first order statistical tests of 
the estimates, and second order econometric considerations for the sample 
data on which the regression is run.

Even before a regression model is constructed, theory must be consulted 
for establishing the nature and direction (possibly, relative strength) of 
relationship between the variables. It begins with proper identification of 
the outcome and predictor variables and then postulating a relationship 
between them. This step is followed by constructing a mathematical 
model of the theoretical relationship. At this stage, theory must guide as 
to the exact form of the relationship, relative strength and the direction of 
influence among the variables. Only a theoretically sound model can have 
any meaning attached to its estimates.

The statistical model establishes the data collection strategy an the 
econometric model then estimates the model parameters. The primary 
criteria for assessing the reliability of econometric method used (the 
estimator), are unbiasedness, consistency, and efficiency.

Unbiasedness: An estimator is unbiased if its expected value is equal 
to the true population parameter. In the case of least squares estimates, 
the Gauss-Markov theorem states that, under certain assumptions 
(linearity, independence, homoscedasticity, and exogeneity), the least 
squares estimators are unbiased and have the smallest variance among 
all linear unbiased estimators. This means that, on average, the least 
squares estimates will be equal to the true population values.

Consistency: An estimator is consistent if it converges in probability 
to the true population parameter as the sample size increases. In other 
words, as more data becomes available, the estimator becomes more 
accurate and reliable. Least squares estimators are consistent under 
the assumptions of the classical linear regression model.

Efficiency: An estimator is efficient if it has the smallest variance 
among all unbiased estimators. The Gauss-Markov theorem states that 
least squares estimators are efficient within the class of linear unbiased 
estimators. However, they may not be the most efficient estimators 
overall, especially if some of the model assumptions are violated.
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We already know that the ordinary least squares estimator is BLUE 
under the assumptions of the model. These assumptions must be checked 
for in individual sample regression model estimates, both graphically 
(using diagnostic plots such as residual and normal probability plots) 
and numerically (for detecting the presence of multicollinearity, 
heteroscedasticity, and autocorrelation). We will discuss these assumptions 
and consequences of their violations as well their detection in the data and 
resolution of the problem in later lessons. For now, assuming the second 
order econometric conditions hold, we will understand the statistical 
procedures to assess the reliability of the estimates using the first order 
tests.

Reliable estimates are those that are close to the true population 
values and have small standard errors, indicating that they would not 
vary substantially if the sampling process were repeated. The least squares 
method aims to minimize the sum of the squared differences between the 
observed values and the values predicted by the linear model. Given a 
dataset with a dependent variable  and an independent variable X, the 
linear regression model can be expressed as:

Y = β0 + β1X + ϵ

where ​β0 is the intercept, ​β1 is the slope of the regression line, and 
ϵ represents the error term. The least squares estimates, ​β̂0 and ​β̂1, ​are 
calculated to minimize the sum of squared residuals (SSR):

�( )2

1

N

i i
i

SSR Y Y
=

= −∑

where,

0 1
ˆ ˆ

î iY Xβ β= +

​are the predicted values. Before assessing the individual parameter 
estimates, we assess how well does the proposed linear regression model fit 
the data. This is done by comparing the predicted values of the regression 
model with an alternate model.

Suppose a sales manager wants to predict the sales for next month. How 
does he do that? In absence of any information–factors that affects sales, 
the exact form of mathematical relationship those factors have with sales–
the best he can do is to find out the average sales of the past few months 
and take that number as the expected sales for the coming month. Finding 
out the average, thus, can be seen as a model for making prediction rather 
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than just a number. This is the most basic of all–the simplest of all possible 
models to abstract reality. Any other model, then, needs to perform better 
than the average to be considered as a good model or even a model itself.

3.1.3  Evaluating the Overall Goodness of Fit

A linear regression model is an improvement over the finding out 
the average model if we can show that the values of the outcome variable 
predicted by it for different values of the predictor variables is closer to 
the actual observed values of the outcome variable. We do not expect, in 
general, the predicted values to be exact matches to the observed values–
be it either the average (Ȳ) or the linear regression estimate (Ȳ). The model 
whose predicted values are closer to the observed ones will be the better 
model. Thus, we need to essentially compare (Y – Ȳ) with (Y – Ŷ). This can 
be visualized in the figure below:

Figure 1: Assessing the Fit of the Regression Line
(This Photo by Unknown Author is licensed under CC BY-SA-NC)

In the figure above, the (red-colored) dots are the observed values of 
y, the horizontal line is the average (ȳ) of these observed values, and the 
(blue-colored) upward sloping straight line is the regression line on which 
lie the predicted values (ŷ) of the outcome variable. So, for all values of the 
predictor variable (x), the average model makes the same prediction (ȳ) and 
the difference between the two is (y – ȳ). But the regression model makes 
different predictions for different values of ; sometimes matching the exact 
observed value of y (dots overlapping the regression line), sometimes 
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overestimating (dots below the regression line) or underestimating (dots 
above the regression line) them.

Thus, for any particular value of x, the difference between the 
corresponding observed value of (y – ȳ); and the predicted value 
given by the naïve model is (); it can be thought of as total deviation 
from the expected value (E[y] = y

_
). Now, we can ask ourselves this 

question: what explains the deviation of the observed value from 
the expected value? The corresponding regression estimate is able to 
account for a part (if not all) of this deviation since it lies between 
the mean and the observed value. Thus, (ŷ – y

_
)  can be thought of as 

the explained deviation. And the rest, the gap between the observed 
value and the regression estimate (y – y

_
)) is the unexplained variation 

(or residual, or simply, the error) of the observed value from the 
expected value of the outcome variable. Thus,

[ ] [ ] [ ]   Total Deviation Explained Deviation Unexplained Deviation= +

( ) ( ) ( )ˆ ˆy y y y y y− = − + −

These deviations are summed for each value of x and is called variously as:

( )= −   ∑
2

1

      
N

iTSS Y Y Total Sumof Squared Errors

( )= −   ∑
2

1

  ˆ    
N

ESS Y Y Explained Sumof Squared Errors

( )= −   ∑
2

1

    ˆ   
N

RSS Y Y Residual Sumof Squared Errors

Thus, for a regression model:

             = +TSS ESS RSS

( ) ( ) ( )− = − + −∑ ∑ ∑
2 22

1 1 1

ˆ ˆ
N N N

iY Y Y Y Y Y

Looked at this way, the higher the proportion of variation explained by 
a model, the better it is compared to the naïve model. The proportion of 
variation explained by the model is:

( )
( )

−
=

−

∑
∑

2

1
2

1

ˆN

N
i

Y YESS
TSS Y Y
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We define this ratio as the coefficient of determination:

= = −2 1ESS RSSR
TSS TSS

Now, in a linear regression model, there are three possibilities:

1.	 The variations in the observed values is completely explained by the 
regression estimates. In this case RSS = 0, therefore R2 = 1.

2.	 The variations in the observed values are not at all explained by the 
regression estimate. In this case RSS = 1, therefore R2 = 0.

3.	 Variations in the observed values are partially explained by the 
regression estimate. In this case RSS < TSS, that is, RSS ___ TSS

 < 1, and 
therefore the value of R2 will be less than 1 but greater than zero.

In summary, the values of R2 lie between zero and one:

0 ≤ R2 ≤ 1

The closer the value of R2 to 1, the better the regression model estimates.

Consider the following dataset of GDP and direct tax collection (in 
billions of rupees). We model the relationship as linear, estimate the 
regression line and assess how well does it explain the variation in the 
sample data:

Yi

(Direct Tax)
Xi

(Real GDP)
Ŷi ESS RSS TSS

3.5 16 3.45 0.20 0.00 0.21

3.2 14 3.15 0.02 0.00 0.03

3.0 12 2.85 0.02 0.02 0.04

2.6 11 2.70 0.09 0.01 0.10

2.9 12 2.85 0.02 0.00 0.03

3.3 15 3.30 0.09 0.00 0.09

2.7 13 3.00 0.00 0.09 0.09

2.8 11 2.70 0.09 0.01 0.10

 3.0 TOTAL 0.54 0.14 0.68DDE, P
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The coefficient of determination is:

= = =2 0.54 0.79
0.68

ESSR
TSS

This implies that the regression model accounts for 79% of variations 
in the observed values. In other words, variations in the predictor variable, 
X, is able to explain 79% of the variations in the outcome variable, Y. This 
leaves 21% variations in direct tax collections unexplained by changes in 
the GDP of the economy. This is a ‘good’ fit; although good being a relative 
word, the model fit is more towards the ideal 100% than far from it.

3.1.4  Testing the Significance of the Parameter Estimates

The regression line is estimated on (representative) sample 
drawn from the population. Since the population regression line 
is unknown, the sample regression line can only be an estimate. 
Therefore, the parameter estimates could well be chance values, i.e., 
we need to test whether they are truly non-zero or not. As statistical 
tests go, we specify the alternate and the null hypothesis for the 
slope of the sample regression line as:

H0: β1 = β̂1

H1: β1 ≠ β̂1

But to test these hypotheses, we need to know about the characteristics of 
the estimator as well as its probability distribution.

We begin with descriptive statistics. Since β is estimated from a 
sampling procedure where the x values remain the same from one sample 
to another, theoretically, β is a random variable. The expected value of a 
random variable is its mean. We will derive an expression for the expected 
value of the least squares estimator. Recall from earlier, the slope of the 
sample regression line is:

( )( )
( )1 2

ˆ Σ − −
β =

Σ −

i i

i

X X Y Y

X X

This can be shortened to:

1 2
ˆ Σ
β =

Σ
i i

i

x y
x
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Where:

( ) ( )= − = −i i i iy Y Y x X X

Now, the estimated regression slope can be rewritten as:

1β̂ = ∑ i iw y

Where:

2=
Σ

i
i

i

xw
x

Thus, estimated slope of the regression line can be expressed as the weight-
ed sum of squared deviations of the outcome variable from its mean. These 
weights,  iw , remain fixed in repeated sampling and possess the following 
properties:

∑ = 0iw

2
2

1
i

i

w
x

∑ =
Σ

∑ = ∑ =1i i i iw x w X

The above exposition implies that:

1
ˆ

i iw Yβ = ∑

Then substituting the value of iY  from a simple linear regression model:

0 1i i iY X e= β +β +

We get:

1 0 1
ˆ

i i i i iw w X w eβ = β ∑ +β ∑ +

     1 i iw e= β +

Taking the expected value of the slope estimator, we get:

1 1
ˆ

i iE w E e β = β +    

Since, the error term is expected on an average to be zero, i.e., =   0iE e , this 
gives:

β β  = 1 1
ˆE
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Thus, the mean of the ordinary least squares estimate of the sample 
regression line is equal to the true slope of the population regression line. 
The variance of the slope estimator can be found out as:

( ) ( )2

1 1 1
ˆ ˆvar E β β = −β  

( ) = ∑ 
2

i iE w e

( )= + +…+
2

1 1 2 2[ ]N NE w e w e w e

 = + +…+ + +… 
2 2 2 2 2 2
1 1 2 2 12N N j i jE w e w e w e w w e e

The remaining terms of which are cross-products of i j i jw w e e  for all ( )<i j .  
And, since:

( ) 2 2    i ivar e E e for all i = = σ 

( )  = = ≠ , 0  i j i jcov e e E e e for i j

This simply reduces to:

( ) ( )2ˆ
i ivar E w eβ1  = ∑ 

              
= σ ∑2 2

iw

              

2

2
ix

σ
=
Σ

The mean of the intercept estimate, 1
ˆ

i iw Yβ = ∑0, can be found as:

β β= −0 1
ˆ ˆY X

     0 1 0
ˆX e X= β +β + −β

    
( )0 1 1

ˆ X eβ= β − −β +

Since, β β  = 1 1
ˆE  and =   0iE e , taking expectations of both sides gives:

β β  = 0 0
ˆE

Then the variance of the intercept estimate can be found out as:

( ) ( )β β β = −  

2

0 0 0
ˆ ˆvar E

              
( ) ( )2

2 2
1 1 1 12ˆ ˆX E E e XE eβ β    = −β + − −β     
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Now,

( )
22

1 1 2
ˆE

x
β β σ − =  Σ 

And

σ  = 
2

2E e
N

Thus:

( ) ( )1 1
1ˆ

i i iE e E w e e
N

β β
   − = ∑ ∑      

( ) = ∑ + −  
21    i i i jE w e cross product termsine e

N

= σ ∑21
iw

N
0=

Therefore:

( )
2

2
0 2

1ˆ Xvar
N x

β
 

= σ + Σ 

And, finally, the error term–itself a random variable– can be expressed as:

	 ( )0 0 0 1 1 0 0
ˆˆ= − = − β −β + −ò òe Y Y x

If we square both sides of this expression and take expectations, the 
expectations of the cross-product terms vanish. Also, since ò’s are 
independent and from an earlier result, ( )β β − = 1 1 0ˆE e , we get:

( ) ( ) ( )β β  = + + −    
ò ò

2
2 2 2

0 0 0 1 1
ˆvar e E E x E

              

 
= σ + + Σ 

2
2 0

2

11
x

N x

Again, since [ ] 0=E e , the variance–covariance matrix of the error term 
can be represented as the expected value of the matrix:

 
 
   =   
 


′

 




ee

1

2
1 2 N

N

e
e

e e e

e
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 
 
 =  
 
  





   



2
1 21 1

2
1 2 2 2

2
1 2

N

N

N N N

e ee e e
e e e e e

e e e e e

Using the rule for mathematical expectation of a matrix, we get:

( )

( )

( )
( )

( )

( )
( )

( )

 
 
 

=    
 
 
 





  



E ee'

2
1 21 1

2
1 2 2 2

2
1 2

( ) N

N

N N N

E e eE e E e e
E e e E e E e e

E e e E e e E e

( )
( )

( )
( )

( )

( )
( )

( )

 
 
 =  
 
  





   



1 1 2 1

1 2 2 2

1 2

, ,
, ,

( , ) ,

N

N

N N N

var e covar e e covar e e
covar e e var e covar e e

covar e e covar e e var e

 σ
 

σ =  
 

σ  





   



2

2

2

0 0
0 0

0 0

 
 
 
 = σ
 
 
 
 





   



2

1 0 0
0 1 0

0 0 1

Therefore, the variance–covariance matrix of the error term (in short, the 
covariance matrix of the random vector e) is:

( ) = = σ   Ne ee' I2cov E N

Now, since by assumption, the random error term ( )σ Ne I2~ 0,N , it can be 
easily shown that the parameter estimates, 1

ˆ
i iw Yβ = ∑0 and 1̂β , are also distributed 

normally. We are now set to perform the test of hypothesis proposed earlier. 
But, before we begin, let’s summarize the results that we have deduced so 
far:

( )β σ2~ , NY N X I

( )σ2~ 0, Ne N I
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β β
  

σ +   Σ  

2
2

0 0 2

1 ˆ ~ , XN
N x

1
ˆ

i iw Yβ = ∑
σ 

β Σ 

2

1 1 2
ˆ̆

i

N
x

Assuming the population variance, σ2 , is known or else the sample size 
is sufficiently large ( ≥ 30N ), the ordinary least squares estimates can be 
standardized following the Z-distribution formula as:

( )
0

0
ˆ

0 0
ˆ ~ 0,1

ˆ
Z N
β

β

β −β
=

σ

( )
1

1
ˆ

1 1
ˆ ~ 0,1

ˆ
Z N
β

β

β −β
=

σ

Using these expressions, we can calculate the probability of the repeated 
sampling producing the value 1

ˆ
i iw Yβ = ∑0â̂  from a population that has the 

hypothesized value (k) as true β0 . Working out in this way, the null and 
alternate hypotheses are written as:

β =0 0:H k

β ≠1 0:H k

The hypothesized value k could be suggested by economic theory or may 
have been obtained in previous studies. The probability of observing 1

ˆ
i iw Yβ = ∑0â̂ ,  

that is ( )
0

ˆP Z
β

, is then compared to a pre-specified level of significance, 
usually taken as 5% (α = 0.05), with the decision criteria being rejection of 
null hypothesis if ( )

0
ˆ  P Z
β

<α . This implies that the probability of getting 1
ˆ

i iw Yβ = ∑0â̂   
by chance is extremely low and therefore, highly unlikely that the true 
value (β0) of the population parameter is different from the estimated 
value ( 1

ˆ
i iw Yβ = ∑0â̂ ) of the sample statistic.

But if the theory does not guide and there are no previous studies 
to look into, the hypothesis then reduces to simply checking whether 
the data gives evidence that the parameter has non-zero value, i.e., the 
associated variable is significant. This is the customary two-tailed test 
usually conducted in econometric studies:

β =0 1: 0H

β ≠1 1: 0H
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In cases where the objective is to check whether the true parameter is 
non-zero, calculating p-value for the sample estimate reduces to dividing 
it with the standard deviation:

1

1 1

ˆ
ˆ

1

ˆ

1
ˆ 0 ˆ

Z
β

β β

β − β
= =

σ σ

An alternative to the p-value approach towards hypothesis testing is the con-
struction of confidence intervals of values around the hypothesized true value 
of the parameter and check whether the estimated value falls within the inter-
val so constructed—if it does, the null hypothesis is accepted, if it does not, the 
alternate hypothesis is accepted.

The width of the confidence interval depends on the level of significance 
chosen. For the commonly used α = 0.05 , the confidence interval can be 
constructed using the Z-value that corresponds to ( )−α =1  0.95  obtained 
from the standard normal table as 1.96; using this, we can construct a 
confidence interval around the hypothesized value of the slope of the 
population regression line such that:

( ) ( )
1 1

ˆ1 ˆ1 11.96 1 5ˆ ˆ .96 0.9P
β β

 β − σ ≤ β ≤ β + σ =  

This 95% level of confidence implies that in repeated sampling, about 
95% of samples will have their 1

ˆ
i iw Yβ = ∑1â̂  value lying between the confidence 

interval constructed above. In general, the confidence interval around the 
hypothesized true value at any level of confidence can be constructed as 
follows:

1
ˆ1

ˆ *criticalZ
β

β ± σ

Where criticalZ  is the Z-value for the chosen level of confidence ( −α1 ).  
But one must keep in mind that for the estimated interval constructed for 
a particular sample, may or may contain the true population parameter. 
Let’s take an example: suppose 1 33.21β̂ = , 

1
ˆ 36
β

σ =  and we want to test the 
hypothesis:

β =0 1: 30H

β ≠1 1: 30H

We get the corresponding Z-value as:

1
ˆ

33.21 30 0.089
36

Z
β

−
= =
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Since, <0.089 1.96 , that is 
1

ˆ criticalZ Z
β
< , we reject the null hypothesis 

and accept the true population slope to be 30 with 95% level of confidence.

Consider another example: from a sample of 850 respondents, 
expenditure on food as a function of monthly income is estimated as:

= +ˆ 75 4.00Y X

Where, Ŷ  is the estimated expenditure on food and X  is the monthly 
income. If the standard errors of the intercept and the slope estimates are:

0 1
ˆ ˆ 5ˆ ˆ 25    1 .2and
β β

σ = σ =

And we want to test the hypothesis:

β =0 1: 0H

β ≠1 1: 0H

Then we compute the Z-value of the slope estimate as:

1
ˆ

4.00 3.33
1.25

Z
β
= =

Since, >3.33 1.96 , that is 
1

ˆ criticalZ Z
β
> , we reject the null hypothesis and 

accept the true population slope to be 4.00 with 95% level of confidence.

The above procedure is possible only if the population variance is 
known. But, in practice, it is not so because:

( )
0

ˆ
2f

β
σ = σ

( )
1

ˆ
2f

β
σ = σ

And the true population variance (σò
2 ) is not known because since the 

error terms are unobservable. In such cases, while Z transformation cannot 
be performed, it is possible to replace σò

2  with its unbiased estimator:

2
2

1
ˆ e

N
Σ

σ =
−ò

( )2

1

1

ˆN
iY

N

Σ −β
=

−

( ) ( )'

1

1

ˆ ˆN Y X Y X

N

β βΣ − −
=

−
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Replacing the denominator with this unbiased estimator renders the 
transformation process follow a t -distribution with −N k  degrees of 
freedom, where k is the number of parameters in the model, including the 
intercept. Thus, transforming the slope estimate, we have:

1

1
ˆ

1
ˆ

ˆ
t
β

β −β
=

σò

Again, the critical values of tc can be found from the table of t-distribution 
for corresponding degrees of freedom. The confidence interval can be con-
structed in the usual manner with symmetrical values of tc forming the lower 
and upper boundaries:

1 1
ˆ

1  
ˆc cP t t

 β −β
− ≤ ≤ = −α 

σ  ò

                                  
( )1 1 1

ˆ ˆ( * ) *ˆ ˆc cP t t = β − σ ≤ β ≤ β + σ ò ò

For the commonly used level of significance (α = 0.05 ), the 95% 
confidence interval can be built using = 2.228ct  for −1N  degrees of 
freedom. Consider an example: from a survey of 20 respondents, the 
consumption function is estimated as:

= +ˆ 120 0.80C Y

The standard errors of the two estimates are:

0 1
ˆ ˆ 5ˆ ˆ 75.7    0.2and
β β

σ = σ =

To check whether the slope is non-zero, we formulate the hypothesis:

0 1: ˆ 0H β =

1 1: ˆ 0H β ≠

We transform the slope estimate as:

1
ˆ

0.80 3.2
0.25

t
β
= =

And compare this with the critical value criticalt . From the table of values 
of the t-distribution, we find the critical values for ( ) ( )− = − =20 2 18N k  
degrees of freedom as:

= ±0.025 2.10t

Clearly, 
1

ˆ 2.10t
β
> + , that is, the estimated value of the slope lies beyond the 

upper value of criticalt , therefore, we reject the null hypothesis and assert that 
the estimated value of the slope is statistically significant.
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Consider another example. For a brand of luxury bathing soaps, its 
sales as a function of advertisement expenditure is estimated as:

= +ˆ 40 4.25Y X

Where, Ŷ  is the estimated sales and X  is the advertisement expenditure. 
The standard errors of the intercept and the slope estimates are found to 
be:

0 1
ˆ ˆ 5ˆ ˆ1 0.2    0.7and
β β

σ = σ =

If we want to test the hypothesis:

0 1: ˆ 0H β =

1 1: ˆ 0H β ≠

Then, we transform the slope estimate to get:

1
ˆ

4.25 5.667
0.75

t
β
= =

Now, for a 11-month sample data, the degrees of freedom are (11 – 2 = 9) 
and the critical values of the t-distribution are:

0.025 2.201t = ±

Thus,
( ) ( )

1
0.0 5ˆ 25.667 2.201t t

β
= ≥ =

Therefore, we take the slope of the sales function as statistically significant.

3.1.5  Testing the Equality of Two Regression Coefficients

Suppose an online grocery shopping company has two service verticals: 
Vertical A specializes in home deliveries within 30 minutes of placing an 
order online, while Vertical B delivers purchased items the next day. The 
company wants to know whether the two verticals have the same average 
weekend sales of, say, processed cheese. This is an example of a problem 
where we want to know whether two populations have the same mean 
parameter.

In order to find out this, the sales manager collects sales data for the 
last 20 weekends. Usually, such data are not distributed normally, but 
techniques exist to transform non-normal data in such a way that the 
transformed dataset follows normal distribution. One such technique is to 
take logarithms of the data and use it instead of the original values.
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For this example, let’s assume that the logarithm of the weekend sales 
data is indeed normally distributed. Also, we assume that while the average 
sales may vary between the two verticals, they have the same standard 
deviation. Assuming common variance eases the exposition a little without 
losing much of the general case. Thus, we suppose:

( ) ( )2vertical A cheese sales ~  ,A AY log N= β σ

( ) ( )= β σ2vertical B cheese sales ~  ,B BY log N

Thus, the manager wants to test the following hypotheses:

β = β0 : A BH

β ≠ β1 : A BH

We also make the following assumptions: (i) the (log of) weekend sales 
each vertical is independent of each other, and (ii) the (log of) weekend 
sales of each vertical is independent from weekend to weekend. The 
second point needs more clarity: we assume that sale of cheese during one 
weekend is independent of the sale of cheese during any other weekend—
past or future. And that this is true for both the verticals. The complete 
model specification is:

= β + = β +Ai A Ai Bi B BiY e Y e

( ) ( )σ σ2 2~ 0, ~ 0,Ai Bie N e N

( ) ( )= = ≠, 0 , 0Ai Aj Bi Bjcov e e cov e e i j

( ) =, 0Ai Bjcov e e

Then the ordinary least squares estimators for the two slopes are:

=  Σ σ
= β 

 

2
1 ,

N
i Ai

A A
Y

b N
N N

2
1 ,

N
i Bi

B B
Y

b N
N N

σβ=  Σ
=  

 

The ‘pooled’ estimator for the common variance of the two populations is:

( ) ( )
( )

2 2
12

1
ˆ

2

N
i Ai A Bi BY b Y b

N
=
 Σ − + − σ =
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It can be shown that the random variable defined as:

= −A Bd b b

follows the t-distribution. Hence, the appropriate test statistic for 
testing the null hypothesis is given by:

( )2 11
2 2ˆ

~
2

d N
dt t

N

−=
 σ
 
 

The null hypothesis being rejected if ≥ criticalt t . The critical value is obtained 
from the table of t-distribution values for ( )−2 1N  degrees of freedom.

Let us see this through by considering the following example of 
weekend sales figures for cheese sold through two separate verticals of 
the online grocery shopping company. The logarithm values of weekend 
sales for twenty weeks of both, Vertical A and Vertical B, are given in the 
following table:

Weekend Vertical A Vertical B

1 6.15698 6.62274

2 6.10702 7.09506

3 6.28413 7.19068

4 6.29711 6.81235

5 6.08677 6.80128

6 6.16331 6. 51767

7 6.57368 7.21671

8 6.46459 7.00307

9 6.39693 7.23634

10 6.15910 6.99485

11 6.38856 7.13090

12 5.92158 6.60123

13 5.97126 6.25958

14 5.94017 6.24804
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Weekend Vertical A Vertical B

15 5.93754 6.47080

16 6.08904 6.95940

17 6.32615 6.87626

18 6.13556 6.55678

19 6.15910 6.31173

20 6.04263 6.78672

From the data in the table the mean sales and pooled variance are estimated:

=

= =∑
1

6.18006
N

Ai
A

i

y
b

N

=

= =∑
1

6.78461
N

Bi
B

i

y
b

N

( ) ( )
( )

2 2
2

1

5ˆ 0.0688
2 1

N
Ai A Bi B

i

y b y b
N=

− + −
σ = =

−∑

The value of the t-statistic comes out to be:

( )1
2 2

6.18006 6.78461 7.28
2 0.06885

20
ˆ2

d
dt

N

−
= = = −
 σ
 
 

The degrees of freedom is calculated to:

( ) ( )− = − =2 1 2 20 1 38N

At α = 0.05, the critical value turns out to be: =38 2.024t  (calculated 
using statistical software SPSS). Since,

> − >or 7.28 2.024criticalt t

we reject the null hypothesis of equality of mean sales; the two verticals 
indeed have different mean weekend sales of cheese.

3.1.6  Testing the Overall Significance of the Sample Regression

The F-statistic is the measure of overall fit of the linear regression, or 
for that matter, any statistical model. The F-test and R-squared (R²) both 
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provide information about the fit of the regression model, but they do so 
in different ways and serve different purposes.

R-squared is a measure of the proportion of the variance in the 
dependent variable that is explained by the independent variables. It ranges 
from 0 to 1, with higher values indicating a better fit. However, R-squared 
has some limitations. For example, it always increases as one adds more 
predictors to the model, even if those predictors are not statistically 
significant or do not improve the model’s predictive power.

The F-test, on the other hand, tests the null hypothesis that all the 
regression coefficients are simultaneously equal to zero. It provides a 
p-value that indicates whether the overall regression model is statistically 
significant. The F-test considers both the explained variance (like 
R-squared) and the unexplained variance. Unlike R-squared, the F-test can 
help determine whether adding more predictors to the model significantly 
improves the fit, or whether the apparent improvement could be due to 
chance.

While R-squared is a descriptive measure of the fit of the model, the 
F-test is an inferential test. Both can be useful in different contexts, and 
they complement each other in understanding the regression model’s 
performance.

Thus, so far we have developed procedures to determine whether 
any individual predictor variable has statistically significant impact on 
the outcome variable by testing the estimate of the associated parameter 
for having a non-zero value–one at a time–we now extend this procedure 
to test whether all parameters have non-zero values simultaneously. This 
is a joint test of significance for parameters of all explanatory variables 
included in the model.

A general linear econometric model having K unknown coefficients 
and (K – 1) explanatory variables can be written as:

= β + β + β +…+ β +1 2 2 3 3i i i iK K iy x x x e

Which can be succinctly written in the matrix algebra form as:

= +y X eβ

To check the overall fit of the model, in other words, to check whether 
all predictor variables included in the model do indeed explain the variance 
in the outcome model, we hypothesize:
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β = β =…= β =0 2 3: 0KH

1 : at least one of the  is non-zerokH β

Denoting the estimators of the model coefficients as …2 3, , , Kb b b , and 
constructing the following matrices:

	

β   
   β   = =
   
   
β      

 
b

2 2

3 3
S S

K K

b
b

b

And the variance-covariance matrix of estimated slope coefficients as:

� ( )

� ( )
� ( )

� ( )

� ( )
� ( )

� ( )

� ( )
� ( )

� ( )

 
 
 

=  
 
 
 





   



b

2 2 3 2

3 2 3 3

2 3

, ,

, ,

, ,

K

K
S

K K K

var b cov b b cov b b

cov b b var b cov b b
cov

cov b b cov b b var b

Then the hypotheses can be expressed in the compressed notation as:

=0 : 0SH β

≠1 : 0SH β

If the null hypothesis is true, the outcome variable is not influenced by 
any of the predictor variables and the model reduces to:

= β +1i iy e

And, if the alternative hypothesis is true, then at least one of the 
predictor variables influences the outcome variable and should be included 
in the model.

It can be shown that the appropriate test statistic to test the hypotheses 
is an F-statistic expressed as:

( ) � ( ) ( )
( ) ( )

−

 − − 

 − − =
−

b b b
1'

1 ,~
1

S S S S S

K N K

cov
F F

K

β β

While testing for a single coefficient, the t-statistic can be thought of 
as the weighted measure of difference between the estimated and the true 
value of a parameter with the weight being the estimated variance � ( )2var b
, in simultaneous testing of all −1K  predictor variables, the F-statistic can 
be thought of as the weighted mean difference between the elements of 
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the estimator matrix Sb  and those of the true coefficient matrix βs with the 
weights being the estimated variance-covariance matrix � ( )bScov .

To test the null hypothesis of all coefficients being nonzero, we compute, 
assuming the null hypothesis to be true, the value of the F-statistic as:

� ( )
−

 
 =

−

b b b
1

'

1
S S Scov

F
K

The decision rule for accepting or rejecting the null hypothesis are 
as usual: compare the estimated F-statistic value with the critical value 
for ( ) ( )− −1 ,K N K  degrees of freedom and if > criticalF F , we reject the null 
hypothesis.

Further, the F-statistic offers a slightly different perspective than 
the R-squared goodness of fit measure. While 2R  represents the ratio of 
explained variation to the total variation in the outcome variable accounted 
for the explanatory variable(s), it can be shown that the F-statistic represents 
the ratio of the explained variation to the unexplained variation in the 
outcome variable accounted for by the explanatory variables. Specifically:

( )

( )

−
=

−

explained variation
1

unexplained variation
K

F

N K

The F-test for testing a null hypothesis comprising simultaneous 
multiple zero hypotheses can be thought of as a generalized case of testing 
a null hypothesis encasing a single zero hypothesis by the means of a t-test.

One may be tempted to assume that conducting one-to-one t-tests 
between all possible pairs of predictor variables is equivalent to conducting 
a single F-test—it is not so. While the argument and proof go beyond 
the scope of this book, one may keep in mind that it is quite possible for 
one-to-one t-tests to deduce some (or even all) estimated coefficients as 
statistically significant only for them to be nullified by the F-test.

Why use the t-test at all, then? It can be shown that = 2F t , and thus 
the F-statistic is agnostic about positive and negative values. This does not 
allow the F-test to perform a two-tailed test, while the t-test can do so. 
Many practical situations require one-tailed tests; only a t-test can do that.
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3.1.7  Summary

A general linear econometric model having K unknown coefficients and 
(K – 1) explanatory variables can be written as:

= β + β + β +…+ β +1 2 2 3 3i i i iK K iy x x x e

The coefficients of this model can be estimated using the ordinary 
least squares method. Reliable estimates are those close to true values 
with small standard errors, achieved by minimizing the sum of squared 
differences between observed and predicted values.

The average is taken as a basic predictive model and serves as a 
benchmark. Any other model must outperform it to be considered effective; 
the model whose predicted values are closer to the observed ones will be 
the better model. We compare ( )−Y Y  with ( )− ˆY Y . Thus, for a regression 
model: Looked at this way, the higher the proportion of variation explained 
by a model, the better it is compared to the naïve model. The proportion of 
variation explained by the model is:

( )
( )

−
=

−

∑
∑

2

1
2

1

ˆN

N
i

Y YESS
TSS Y Y

Where,

( )= −   ∑
2

1

      
N

iTSS Y Y Total Sumof Squared Errors

( )= −   ∑
2

1

  ˆ    
N

ESS Y Y Explained Sumof Squared Errors

( )= −   ∑
2

1

    ˆ   
N

RSS Y Y Residual Sumof Squared Errors

For a statistical model

= +TSS ESS RSS

( ) ( ) ( )− = − + −∑ ∑ ∑
2 22

1 1 1

ˆ ˆ
N N N

iY Y Y Y Y Y

We define this ratio as the coefficient of determination:

	
= = −2 1ESS RSSR

TSS TSS
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The values of 2R  lie between zero and one:

	 ≤ ≤20 1R

The closer the value of 2R  to 1, the better the regression model estimates.

As the true population regression line is unknown, the parameter 
estimates of the sample regression line may be chance values, so we need 
to test the hypothesis that they are significantly non-zero:

0 1 1
ˆ:H β = β

     H1​: β1 ≠ β​1 

​To test these hypotheses, we need to understand the characteristics of 
the estimator and its probability distribution. The mean of the ordinary 
least squares estimates of the sample regression line are:

0 0
ˆE β β  = 

1 1
ˆE β β  = 

The variance of the estimators can be given as:

( )
2

2
0 2

1ˆ Xvar
N x

β
 

= σ + Σ 
( )

2

1 2
ˆ

i

var
x
σβ =
Σ

Also, for the error term, we have:

   =  E e 0

( )
2

2 0
0 2

11
x

var e
N x

 
= σ + + Σ 

( ) = = σ   Ne ee' I2cov E

Thus, for a linear regression model:

( )β σ2~ , NY N X I

( )σ2~ 0, Ne N I

2
2

0 0 2

1 ˆ ~ , XN
N x

β β
  

σ +   Σ  

2

1 1 2
ˆ ~ ,

i

N
x
σ 

β β Σ 

DDE, P
on

dic
he

rry
 U

niv
ers

ity



Notes

115

To check the statistical significance of the parameter estimates, the 
following hypotheses are constructed:

β =0 0:H k

β ≠1 0:H k

The test is carried out by calculating the Z-values of the estimates:

( )
0

0
ˆ

0 0
ˆ ~ 0,1

ˆ
Z N
β

β

β −β
=

σ

( )
1

1
ˆ

1 1
ˆ ~ 0,1

ˆ
Z N
β

β

β −β
=

σ

and comparing them to the critical Z-value obtained for a particular 
level of significance (usually taken as α = 0.05 ). in the p-value approach, 

if the ( ) ( )ˆ criticalP Z P Z
β
≤  we reject the null hypothesis and say that the 

estimates are statistically significant. In the confidence interval approach, 
we decide upon boundaries around the hypothesized mean for a particular 
level of confidence (given by −α1 ):

1
ˆ1

ˆ *criticalZ
β

β ± σ

For α = 0.05 , the 95% confidence interval can be constructed as:

( ) ( )
1 1

1 1ˆ ˆ1
ˆ ˆ1.96 1.96

β β
β − σ ≤ β ≤ β + σ

If the estimated value of the parameter lies within this boundary, the 
null hypothesis is accepted, else rejected. The Z-transformation is only 
possible if the population variance is known, else we do a t-transformation 
and the confidence interval is calculated as:

( )1 1 1 ˆ( * ) *ˆ ˆˆc ct tβ − σ ≤ β ≤ β + σò ò

The same decision rule applies for accepting or rejecting the null hypothesis.

To test the equality of parameters of two separate samples, we specify 
the complete model as:

= β + = β +Ai A Ai Bi B BiY e Y e

( ) ( )σ σ2 2~ 0, ~ 0,Ai Bie N e N

( ) ( )= = ≠, 0 , 0Ai Aj Bi Bjcov e e cov e e i j

( ) =, 0Ai Bjcov e e
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Then the ordinary least squares estimators for the two slopes are:

2
1 â ,

N
i Ai

A A
Y

b N
N N
=  Σ σ

=  
 

σβ=  Σ
=  

 

2
1 ,

N
i Bi

B B
Y

b N
N N

The ‘pooled’ estimator for the common variance of the two populations is:

( ) ( )
( )

2 2
12

1
ˆ

2

N
i Ai A Bi BY b Y b

N
=
 Σ − + − σ =

−

Then to test the hypotheses:

β = β0 : A BH

β ≠ β1 : A BH

The appropriate test statistics is:

( )2 11
2 2ˆ

~
2

d N
dt t

N

−=
 σ
 
 

The null hypothesis being rejected if ≥ criticalt t . The critical value is 
obtained from the table of t-distribution values for ( )−2 1N  degrees of 
freedom.

The F-statistic is the measure of overall fit of the linear regression 
model. To check the overall fit of the model, in other words, to check 
whether all predictor variables included in the model do indeed explain 
the variance in the outcome model, we hypothesize:

β = β =…= β =0 2 3: 0KH

βk1 : at least one of the  is non-zeroH

To test the null hypothesis of all coefficients being nonzero, we compute, 
assuming the null hypothesis to be true, the value of the F-statistic as:

� ( )
−

 
 =

−

b b b
1

'

1
S S Scov

F
K
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We compare the estimated F-statistic value with the critical value for 

( ) ( )− −1 ,K N K  degrees of freedom and if > criticalF F , we reject the null 
hypothesis. F-statistic represents the ratio of the explained variation to 
the unexplained variation in the outcome variable accounted for by the 
explanatory variables:

( )

( )

−
=

−

explained variation
1

unexplained variation
K

F

N K

The F-test can be thought of as a generalized case of a t-test.

3.1.8  Keywords

Theoretical Foundation: The construction of a regression model 
begins with the identification of outcome and predictor variables, 
followed by the postulation of a relationship between them. A 
theoretically sound model is essential for meaningful interpretation 
of results.

General Linear Econometric Model: This model represents the 
relationship between the outcome variable and predictor variables in a 
linear form. It can be represented in matrix form as: y = Xβ + e.

Ordinary Least Squares Estimator (BLUE): This estimator operates 
under specific assumptions and its reliability is judged based 
on theoretical justification, statistical tests of the estimates, and 
econometric considerations for the sample data.

Model Evaluation: The reliability of a regression model can be 
judged on three sets of criteria: a priori theoretical justification of 
the model, first order statistical tests of the estimates, and second 
order econometric considerations for the sample data on which the 
regression is run.

Total Sum of Squared Errors (TSS): It is the difference between 
the observed value of the outcome variable and its expected value 
estimated through the average model.

Explained Sum of Squared Errors (ESS): It is the difference between 
the estimated value of the outcome variable through the least squares 
method and the corresponding expected value estimated through the 
average model.
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Residual Sum of Squared Errors (RSS): This is the difference between 
the observed value of the outcome variable and its estimated value 
through the least squares method.

Coefficient of Determination (R2): This is the proportion of the 
variance in the dependent variable that is predictable from the 
independent variables.

Statistical Significance of Parameter Estimates: The parameter 
estimates might be chance values, so we need to test if they are 
significantly non-zero. This involves setting up null and alternate 
hypotheses for the slope of the sample regression line.

F-Statistic: The F-statistic is the measure of overall fit of the linear 
regression model. It represents the ratio of the explained variation to 
the unexplained variation in the outcome variable accounted for by 
the explanatory variables.

Pooled Estimator: The ‘pooled’ estimator for the common variance of 
the two populations is introduced in the document. It is used to test 
the equality of parameters of two separate samples.

3.1.9  Self-assessment Questions

1.	 Show that if the estimated confidence interval, 
ˆ

cb t
N
σ

± , contains 
β0 within it, then the null hypothesis, β = β0 0:H , will not be rejected 
at the ( −α1 ) level of confidence.

2.	 A coffee vending machine is calibrated to pour 7.0 ounces of Choco 
Latte into large coffee take-away cups. To check that the vending 
machine is operating as desired, an engineer pours four cups of 
Choco Latte and measures the volume of coffee poured and gets: 
7.34, 6.92, 6.88 and 7.26 ounces. Assume that the coffee poured 
follows a normal distribution.

a.	 Construct a 95% confidence interval around the average amount 
of coffee poured.

b.	 Test the hypothesis, at the 5% level of significance, that the 
mean coffee poured is 7.0 ounces.

3.	 In the previous question (question number 2), following the initial 
check, the coffee vending machine is re-calibrated and again 
checked for mean pourings. A fresh pourings of Choco Latte into 5 
cups yields the following volume of coffee poured: 7.93, 7.49, 7.33, 
7.65, and 7.10 ounces. Assuming that the recalibration does not 
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affect the variance in the volume of Choco Latte poured, test the 
hypothesis that recalibration does not affect the mean volume of 
Choco Latte poured by the vending machine.

4.	 The Nike Shoe Company has launched a new pair branded ‘Nike 
Airism’ and wants to advertise that these shoes last at least 1000 
kilometers of running. To test for this claim, they tested these shoes 
with six professional runners. The kilometers till their new shoes 
worn out were found to be: 1565, 1215, 850, 1020, 1170, and 1380 
kilometers. Should the company make this claim?

a.	 Test the claim at 1% level of significance.

b.	 Construct a 95% confidence interval for the average number of 
kilometers that these shoes last.

5.	 Does studying sampling properties of an estimator make any sense 
when we typically draw only one sample for making inference?

6.	 Data for gross income and corporate tax (in billions of rupees) paid 
by the companies included in the BSE Sensex for two years, 2016-17 
and 2017-18 is given in the table below:

2016-17 2017-18

Income Tax Income Tax

2.7762 1.0682 2.0731 1.3486

2.5386 1.4250 3.3184 1.2150

6.8234 0.8386 5.5981 2.1870

4.1461 0.3665 9.5096 2.1868

6.1798 1.7495 7.3467 1.2561

8.3197 1.6181 7.5085 2.0564

3.9525 1.7747 2.4499 2.1355

6.2480 1.8567 5.9901 2.0890

5.8963 1.8565 5.5270 1.8866

7.1567 0.5519 9.4755 2.0813

2.9713 1.7649 7.0346 0.9830

8.7398 0.4026 5.5228 1.6376
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2016-17 2017-18

Income Tax Income Tax

7.1162 0.5971 2.1279 0.4925

7.1063 1.8568 9.3538 1.9689

7.4825 1.5432 10.3953 1.7745

7.0196 1.3294 8.9192 2.0775

4.7471 0.9791 10.0262 0.7272

3.1893 0.8428 4.1156 1.9481

4.7118 1.3834 9.8602 1.0169

9.1930 1.1728 6.8950 1.2389

a.	 Estimate the simple linear regression of tax over income for 
both the years separately.

b.	 Pool the observations from both the years and estimate the 
regression of tax over income for the pooled data as a whole.

c.	 Compare the estimates of the slope coefficients from (a) and 
(b).

7.	 Slope of the tax coefficient, in the question above (question number 
6), represents the marginal tax rate. Test the hypothesis that the 
marginal tax rate for both the years is the same–at 5% level of 
significance.

8.	 As part of its continuous performance audit, a life insurance firm 
checks the performance of a randomly selected scheme from 
amongst its array of market-linked policies. It collects data from a 
group of 20 randomly selected policy holders and wants to model 
the relationship between family income and life insurance cover. 
The data collected (in lakhs of rupees per annum) is presented 
below:

Insurance Income Insurance Income

386 40 112 83

332 40 391 49

273 94 110 74
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137 42 254 64

225 25 100 46

263 59 367 73

107 27 288 78

193 28 151 41

329 67 296 48

376 33 347 95

a.	 Estimate a linear relationship between family income and 
insurance cover.

b.	 By how much does the insurance cover increase for every rise 
Rs.100,000 rise in family income?

c.	 At 5% level of significance, test whether the insurance cover 
coefficient is statistically significant.

9.	 While rice bran and soyabean both cost the same per kilogram, the 
oil produced by pressing them varies in volume. A vegetable oil 
manufacturing company wants to evaluate which of the two inputs 
would be cost effective for producing oil–assuming a fixed selling 
price that the customers are willing to pay. Following is the data of 
liters of oil produced per kilogram of inputs:

Input
Output

Soyabean Rice Bran

1 1.40 0.82

2 3.25 1.32

3 3.19 3.16

4 2.20 4.56

5 1.06 2.21

6 2.63 0.98

7 3.67 2.66

8 4.19 3.42
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Input
Output

Soyabean Rice Bran

9 1.73 0.93

10 1.66 3.78

11 4.34 3.37

12 2.06 2.60

13 3.78 3.94

14 1.25 2.99

15 3.64 2.84

a.	 Estimate the marginal output for both soyabean and rice bran 
individually.

b.	 Test the hypothesis that both have the same mean liters of 
vegetable oil output.

c.	 Which input should the manufacturer use?

10.	 The following table presents the data on consumption (Y ) and 
family income ( X ) for ten randomly selected family from a 
neighborhood:

Y 7 6 10 8 9 8 9 10 10 11

X 52 59 58 65 70 50 55 57 62 68

a.	 Estimate the consumption function by regressing consumption 
over family income.

b.	 What percentage of variance in the consumption expenditure is 
explained by the level of family income?

c.	 At 5% level of significance, test the hypothesis that the marginal 
propensity to consume is nonzero.

d.	 Construct a 95% confidence interval around the mean 
consumption level.DDE, P
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3.1.10  References

1.	 Regression: Models, Methods and Applications by Ludwig 
Fahrmeir, Thomas Kneib, Stefan Lang, Brian D. Marx: This book 
provides an applied and unified introduction to parametric, 
nonparametric, and semiparametric regression. It bridges the gap 
between theory and application, featuring examples, applications, 
and user-friendly software.

2.	 Statistics and Data Analysis for Financial Engineering by David 
Rupert. This book provides theoretical results about linear least-
squares estimation. The study of linear regression is facilitated by 
the use of matrices. It covers advanced topics in regression analysis.

3.	 Regression Analysis: An Intuitive Guide for Using and 
Interpreting Linear Models by Jim Frost. This book is one of the 
best regression books of all time. It provides a comprehensive guide 
to understanding, using, and interpreting linear models.

4.	 Linear Models and Generalizations: Least Squares and 
Alternatives by Rao et al. This book covers most of the topics with 
proofs and also covers generalized linear models (GLMs).

5.	 The Coordinate-Free Approach to Linear Models by Michael J. 
Wichura. This book provides a more geometric viewpoint to linear 
models. It may not cover all the topics but is a good resource for 
understanding the geometric aspects of linear models.
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UNIT – IV: Assumptions of the Classical Linear Regression Model

Lesson 4.1 – Stochastic Assumptions of the Classical Linear 
Regression Model

Structure

4.1.1	 The Classical Linear Regression Model

4.1.2	 Fundamental Assumptions of the Model

	 4.1.2.1	 Randomness of the Error Term

	 4.1.2.2	 Zero Mean of the Error Term

	 4.1.2.3	 Equal Variance of the Error Term

		       4.1.2.3.1    Consequences of Heteroscedasticity

		       4.1.2.3.2    Solutions for Heteroscedastic Data

	 4.1.2.4	 Normally Distributed Error Term

4.1.3	 Summary

4.1.4	 Keywords

4.1.5	 Self-assessment Questions

4.1.6	 References

4.1.1  The Classical Linear Regression Model

A linear regression model is a mathematical function expressing a 
relationship between, in its simplest form, one dependent and one or more 
independent variables of the form:

( )1 2, , ,= … kY f X X X

where the relationship specifically takes the form of a straight line:

0 1 1 2 2β β β β= + + +…+ k kY X X X

Giving this relationship a statistical form would mean the y and x–
values would come from a sample and the coefficients of the model need to 
be estimated using this data. The coefficients, in this scenario, are estimates 
derived from a sample and may not necessarily be equal to their true values 
that supposedly exist in the population, breaks down the exactness of the 
relationship between y and x’s. To mend for this very likely deviation, we 
introduce an unobserved variable, the error term, that will account for 
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any deviations between the actual (observed) and predicted (estimated) 
values. The statistical form of the relationship now becomes:

0 1 1 2 2= β +β +β +…+β +òi i i ki k iY X X X

where, the subscript ‘i’ represents the ith observation in a series of ‘n’ 
observations. Written in this form, the relationship is linear in independent 
variables; but in repeated sampling the Xi’s are constant, and it is the 
coefficients, β’s, that are estimated variably. This gives linearity another 
point of view: the relationship is linear in parameters.

Even this statistical relationship is devoid of any economic meaning; 
the estimated coefficients lack economic interpretation. For example, 
what does the derivative of the dependent variable with respect to an 
independent variable mean? Let’s partially differentiate y with respect to, 
say, x2:

	
2

2 2

∂∂
= β +

∂ ∂
òiy

x x

One could possibly interpret this, had the partial derivative of the 
error term would have turned out to be zero. Had it been so, the partial 
derivative would have turned out to be:

	
2

2

β∂
=

∂
y
x

But there is nothing in the model that would give:

2

0∂
=

∂
òi

x

But, even for β2 above (and for that matter, any of the βs) to have an 
economic meaning, we need to make assumptions appropriate for the 
underlying data that is used to generate the estimates. The classical linear 
model makes a few assumptions that help ascribe some economic meaning 
to the model parameters, although most of those assumptions do not 
realistically apply to economic (or any other social science) data.

4.1.2  Fundamental Assumptions of the Model

The classical linear regression model makes two fundamental 
assumptions, both outlined above, but are worth restating. The first is that 
the model is a linear function of the parameters, thus, in matrix notation:
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Y = Xβ + ò

where Y is a vector of n observations of the outcome variable, X is a 
matrix of n×k predictors, β is a vector of k+1 parameters, and ò is a vector 
of n error terms.

The second fundamental assumption relates to the way statistical 
significance of estimates is tested–repeated sampling to deduce 
distributional properties of the estimator. Thus, it assumes that in multiple 
sampling, the predictors are nonstochastic. In other words, X is a matrix of 
constants with rank k, and:

1lim ′ = XQ
n

X X

To isolate effects of individual predictors, the Qx is assumed to be a 
finite positive definite matrix. These assumptions prepare the ground for 
making the most crucial of all assumptions that sets the stage for not only 
devising an estimator for the coefficients but also impart them economic 
meaning: the error term is identically and independently distributed 
random variable with zero mean and a common variance. That is:

( )2~ 0,σò nIID I

where ò is a jointly distributed IID. Thus, the error terms have the same 
variance for every predictor variable (a property called homoscedasticity):

( ) 2
i = σ ∀òvar i

Also, the error terms are not correlated with each-other:

( ) 0= ∀ ≠òòi jcovar i j

An additional, but commonly invoked, assumption is that the error 
terms are, in fact, normally distributed, that is:

( )2~ 0,σò nN I

Even when the underlying data is assumed to be IID, the assumption 
of normality does not, in general, hold for many economic and other 
social sciences data. For example, in a study where effect of petrol prices 
is being estimated, the dependent variable may be the number of times a 
service engineer goes out on field visits to address customer complaints 
for a consumer electronic company. If the petrol prices rise, the company 
may try to delay sending technicians to a locality from which only a 
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single complaint has been registered till a few more complaints are raised 
thus saving on the conveyance cost. This is a count variable, and such is 
discrete–not continuous–and thus cannot be normally distributed. Very 
frequently in Economics we have variables, such as number of units of a 
commodity consumed or a service delivered, that cannot assume negative 
values thus rendering them, technically, nonnormal. Nonetheless, this 
does not rule out assumption of normality as a good model under certain 
circumstances.

4.1.2.1  Randomness of the Error Term

Technically, error terms are necessitated by the fact that coefficient 
estimation takes place with sample data. The very use of a sample means 
that the outcome and predictors cannot be related with certainty–there 
always will be an element of uncertainty. There can be other sources of 
errors, too, such as: the model itself may be mis-specified, that is, the linear 
relationship may itself be not appropriate for modeling the relationship 
between the outcome and the predictors. This problem is accentuated in 
cases where theory does not guide about the mathematical structure of the 
relationship. Many of the real-life econometric phenomena are rife with 
this handicap.

Even if the relationship is correctly identified as being linear, the 
model constructed may miss some or many of the predictors—a problem 
of omitted variables. This omission may be due to sparse guidance from 
the theory, or because the concept of the predictor itself is nebulous such 
as the ‘state of mind’ of a consumer or even may be because the variables 
are difficult (if not impossible) to measure such as the ‘complexity’ of a 
design. This last problem translates into measurement errors wherein the 
predictor is not measured correctly either because it is abstract or because 
the scale of measurement is not proper. Errors in measurement can also 
occur if the measured values are not ‘recorded’ properly—this is a human 
error.

But the biggest source of error is the volatility of human nature which 
is the focal subject in most of the social science studies. The human nature 
has not yet been modeled with any certainty. Therefore, any measurement 
that involves human behavior–consumption pattern, work habits, 
investment decisions, political voting, etc.–is by its very nature, uncertain. 
Any attempt to model it has to deal with this uncertainty.
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In face of such daunting circumstances, how to estimate the parameters 
of the model in any meaningful way? The way forward is if these errors are 
truly random then they can be accounted for in the estimation procedure 
and a reasonably reliable estimate be found. But the key lies in the error 
terms to be random. This is a difficult task and must be taken care of 
with utmost diligence. For the error terms to be random, the omitted 
variables must be unimportant (having minuscule or negligible effect on 
the outcome variable), must be numerous, and must all change in different 
directions for their overall effect on the outcome variable to be stochastic. 
This is a particularly important point because if the omitted variable is an 
important one, or they are only a handful in number or they all change 
more or less in the same way, then the errors will show a pattern and not 
be random. Moreover, the errors in recording the data must also not show 
any pattern, otherwise the omissions will be systematic and not random.

The discussion above should make it clear that there cannot be a 
formal statistical test for checking the randomness of the error terms. 
The true random errors (the ϵ’s) are unobservable and they are estimated 
assuming randomness. This assumption is endogenous to the estimation 
the procedure(s) and as such the estimation procedure cannot itself be 
used to test for it.

4.1.2.2  Zero Mean of the Error Term

The assumption implies that the mean of the independently identically 
distributed error term is zero:

( ) 0=òiE

The error term in any particular sample is thought of to be drawn 
from a distribution of error values that gets in repeated sampling. Let’s 
consider a simple linear model with only one predictor:

0 1 1= β +β +òi i iY X

In repeated sampling, for a particular value of the predictor, say Xm, 
the error values will be different in different samples and these error values 
will follow a distribution with a mean of zero. Zero mean of the error term 
implies that:

( ) ( )0 1 1= β +β + òE Y X E

( ) 0 1 1= β +βE Y X
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Thus, the random part of the relationship drops off and the nonstochastic 
part can then be estimated using econometric procedures. This is reflected 
in the scatter of the Y and X values; if the values are scattered randomly 
around the population line, then only the sample regression line be a good 
approximation of the true relationship.

The effect of a nonzero random error term can be deduced as follows: 
suppose that the expected value of the error term is lesser than zero, that 
is,

( ) 0<òiE

then the observed values of the outcome and the predictor from the 
sample drawn will lie below the true population regression line. Thus, the 
estimated regression line will be negatively biased and not reflect the true 
relationship.

Just as in the case of assumed randomness of the error term, its mean 
being zero cannot also be verified using any formal statistical test. This, 
again, happens because the estimation procedure sets the expected value of 
the error term to be zero at the very outset of deriving the estimator. And 
just as in the case of randomness, this assumption should be ensured at 
the very beginning of the model building and data collection efforts. The 
researcher should ensure that no important predictor is omitted, scales 
of measurement are appropriate, and the recording errors, if any, do not 
follow any pattern. Eliminating avenues of systematic variation is the only 
way to ensure that the assumption of zero mean of the random error holds.

Despite all efforts, in many cases, while working with real-life data 
a researcher is obliged to omit variables that may not be unimportant–
this happens particularly when the data exhibits multicollinearity (we will 
discuss it in a later lesson). Also, many of the economic variables tend to 
vary systematically, e.g., gross domestic product and corporate tax revenue.

4.1.2.3  Equal Variance of the Error Term

The assumption of equal variance goes a step ahead of the assumption 
of zero mean and implies that across all values of the predictors, the 
probability distribution of the error term has the same–common–variance. 
Thus, as we have discussed earlier, in repeated sampling the error term for 
a particular predictor in a particular sample is thought of as coming from 
a probability distribution of the error term that has a mean zero and this is 
true for all predictors in the model. The equal variance assumption states 
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that these probability distributions of error terms for each of the distinct 
predictors have a constant, equal variance. That is:

( ) 2|   = σ ∀òi ivar X i

Again, this means that for a multiple regression model of the form:

0 1 1 2 2= β +β +β +…+β +òi i i k ki iY X X X

the variance of the distribution of error term associated with, say X2 is 
the same as the variance of the distribution of error associated with Xj or 
of any other predictor; the variance of the distribution of error term does 
not change with changing the predictor.

The equal variance property is called homoscedasticity and can be 
graphically represented as in the following figure:.

Figure 1: Homoscedastic Distribution of Errors

This figure shows that the spread of the residuals around the regression 
line is consistent, regardless of the independent variable’s values.

Under homoscedasticity, the Ordinary Least Squares (OLS) estimator 
for the regression coefficients (β) is efficient. This means it has the 
minimum variance among all unbiased estimators—an integral part of the 
OLS estimator’s property of being BLUE.

Homoscedasticity allows for more precise confidence intervals 
and hypothesis tests. When the error terms have constant variance, the 
calculated standard errors of the regression coefficients are reliable. 
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These standard errors are used to construct confidence intervals and test 
hypotheses about the β coefficients. Inaccurate variance estimates lead to 
unreliable standard errors, hindering proper inference.

A battery of tests exists for confirming homoscedasticity in the dataset. 
If the dataset has unequal variances for the error terms, that is, if:

var (∈i|Xi) = σi
2

then the variance of the distribution of errors is changes with a 
change of X; it is not independent of the predictors. This condition is 
called heteroscedasticity. Detecting heteroscedasticity is crucial to ensure 
reliable results and guide appropriate remedial measures. Some of the most 
commonly used tests for confirming homoscedasticity (or equivalently, 
detecting heteroscedasticity) are:

Spearman’s Rank Correlation Test

The simplest (computationally) and most widely applicable (can be 
performed with any sample size, large or small) of all tests. It computes the 
rank correlation of estimated errors, with high rank correlation suggesting 
presence of heteroscedasticity. The procedure for conducting the rank 
correlation test it is as follows:

1.	 Regress the outcome variable, Y, on the predictor, X:

	 0 1 1= β +β +òi i iY X

	 and obtain the error estimates, e’s, of the model residuals, ò’s.
2.	 Take the absolute values of the e’s and arrange them in ascending 

order (or descending order) and assign ranks to the ordered values. 
Repeat the procedure for the predictor values, X’s.

3.	 Compute pair-wise difference in ranks (Di) for all pairs of (Xi, ei ) in 
the sample of n observations.

4.	 Compute the rank correlation according to the Spearman’s formula:

( )
2

, 2

61
1

Σ
ρ = −

−
i

X e
D

n n

For a model with more than one predictor, the rank correlation needs 
to be calculated for each pair of the estimated errors and predictors, 
separately. Then an F-test can be done to check the hypothesis that the 
pair-wise rank correlations are all simultaneously nonzero.

Figure 2: Normally Distributed Errors
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These standard errors are used to construct confidence intervals and test 
hypotheses about the β coefficients. Inaccurate variance estimates lead to 
unreliable standard errors, hindering proper inference.

A battery of tests exists for confirming homoscedasticity in the dataset. 
If the dataset has unequal variances for the error terms, that is, if:

var (∈i|Xi) = σi
2

then the variance of the distribution of errors is changes with a 
change of X; it is not independent of the predictors. This condition is 
called heteroscedasticity. Detecting heteroscedasticity is crucial to ensure 
reliable results and guide appropriate remedial measures. Some of the most 
commonly used tests for confirming homoscedasticity (or equivalently, 
detecting heteroscedasticity) are:

Spearman’s Rank Correlation Test

The simplest (computationally) and most widely applicable (can be 
performed with any sample size, large or small) of all tests. It computes the 
rank correlation of estimated errors, with high rank correlation suggesting 
presence of heteroscedasticity. The procedure for conducting the rank 
correlation test it is as follows:

1.	 Regress the outcome variable, Y, on the predictor, X:

	 0 1 1= β +β +òi i iY X

	 and obtain the error estimates, e’s, of the model residuals, ò’s.
2.	 Take the absolute values of the e’s and arrange them in ascending 

order (or descending order) and assign ranks to the ordered values. 
Repeat the procedure for the predictor values, X’s.

3.	 Compute pair-wise difference in ranks (Di) for all pairs of (Xi, ei ) in 
the sample of n observations.

4.	 Compute the rank correlation according to the Spearman’s formula:

( )
2

, 2

61
1

Σ
ρ = −

−
i

X e
D

n n

For a model with more than one predictor, the rank correlation needs 
to be calculated for each pair of the estimated errors and predictors, 
separately. Then an F-test can be done to check the hypothesis that the 
pair-wise rank correlations are all simultaneously nonzero.

Figure 2: Normally Distributed Errors

1 1 2 20 , , ,:  0ρ = ρ =…= ρ =
k kX e X e X eH

1 :at least one paire-wise rank correlation is nonzeroH

A statistically significant high rank correlation signifies presence 
of heteroscedasticity in the dataset. Spearman’s rank correlation is used 
instead of Pearson’s coefficient of correlation because in running the 
ordinary least squares procedure for estimating the residuals, we assume:

0Σ =eX

therefore, the Pearson’s coefficient of correlation computed using the 
formula:

, 2 2

Σ
=

Σ Σ
X e

Xer
e x

will always yield , 0=X er  since the numerator in the formula is zero.

Glejser Test

One solution to 0Σ =eX  is to take absolute values of the residuals, ie .  
Also, in modeling regression, it the dispersal of the values around the 
regression line is all that matters, and not its direction (above or below the 
regression line). This idea is used by the Glejser test. But instead of finding 
the coefficient of correlation, the test runs a regression of the absolute 
vales of the error terms on the associated predictors. But there are no a 
priori grounds for modeling a specific form of the regression relationship 
between the residuals and the predictors, different versions bearing 
different exponentiations of the predictor variables are experimented with 
to arrive at a satisfactory model:

2
0 1= + je c c X

1
0= +

j

ce c
X

0 1= + je c c X

Once a satisfactory model is decided upon, the regression is run for 
each pair of absolute errors and predictors. The values of the coefficients  
( 0 1,c c ) thus obtained are checked for their statistical significance, either by 
conducting individual t-tests or a comprehensive F-test. It is only in the case 
that both the coefficients turn out to be not significantly different from zero 
(i.e., 0 1 0= =c c ), can we conclude data being homoscedastic. Otherwise, if 
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both 0 0≠c  and ≠c , it is the case of mixed heteroscedasticity. And if 

0 0=c  but 1 0≠c , we call it pure heteroscedasticity.

The Glejser’s test has an added advantage, while checking for 
heteroscedasticity, we already check for the exact form of heteroscedasticity, 
i.e., the way in which the error terms are related with the predictors. This 
is an important aspect as it shapes the way in which we possibly could 
attempt to correct for estimation of regression parameters in the presence 
of heteroscedasticity.

Breusch-Pagan Test

The Breusch-Pagan test is predicated on the premise that if 
heteroscedasticity is present, the variance of the errors from a regression 
model will be correlated with one or more of the independent variables. The 
test involves regressing the squared residuals on the independent variables 
and the predicted values of the dependent variable, and testing the null 
hypothesis that the coefficients on the predicted values are simultaneously 
equal to zero.

The Breusch-Pagan test is a Lagrange multiplier (LM) test that utilizes 
the squared residuals from the initial regression to assess the presence of 
heteroscedasticity. It tests the null hypothesis of homoscedasticity against 
the alternative of heteroscedasticity. The Breusch-Pagan test statistic (LM 
statistic) is calculated as follows:

2=LM nR

         

2

2σ
= ∑ ie

where:

=n  number of observations

² =R  coefficient of determination from the initial regression

=ie  residuals from the initial regression

²σ =  assumed constant variance of the error term.

The procedure for conducting the test is as follows:

1.	 Regress the dependent variable Y on the independent variables X to 
obtain the residuals, e.

2.	 Compute the squared residuals e2.
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3.	 Regress e2 on the original independent variables X and obtain the 
R-squared value, R2.

4.	 Calculate the test statistic LM = nR2. This statistic follows a chi-
square ( 2χ ) distribution with degrees of freedom equal to the 
number of independent variables.

5.	 Compare LM to the critical value from the 2χ -distribution to 
determine the presence of heteroscedasticity.

Large LM statistics with a p-value less than a chosen significance 
level (e.g., 0.05α = ) indicate a rejection of the null hypothesis and suggest 
heteroscedasticity.

Goldfeld-Quandt Test

The Goldfeld-Quandt test is a test for heteroscedasticity that is based 
on the idea that if the error term is heteroscedastic, then the variance of 
the error term will be different for different subsets of the data. The test 
involves dividing the data into two or more subsets based on the values of 
the independent variables and comparing the variance of the error term 
in each subset. The null hypothesis is that the variance of the error term 
is the same in all subsets, indicating homoscedasticity. The alternative 
hypothesis is that the variance of the error term is different in at least two 
subsets, indicating heteroscedasticity. The procedure for running the test 
is as follows:

1.	 Sort the data (comprising k variables) by the independent variable 
suspected of influencing the heteroscedasticity.

2.	 Divide the sorted data into two groups, excluding a central portion 
(c, n–c) to ensure no overlap.

3.	 Perform separate OLS regressions for each group and compute the 
sum of squared residuals (SSR) for both.

4.	 Calculate the test statistic as the ratio of the larger SSR to the smaller 
SSR, which follows an F-distribution.

2
2

2
* 2

2 2
1 1

2

2

Σ
−

− Σ
= =
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	 The degrees of freedom being: 
2
−

−
n c k , same for both the numerator 

and denominator.

5.	 Use the F-distribution to assess the significance of the test statistic. If 
F*> Fcritical, error terms are heteroscedastic, else if F*< Fcritical, they are 
homoscedastic. If the distribution of error terms is homoscedastic, 
the F* value will be closer to 1; the more heteroscedastic, the higher 
the F* value.

Goldfeld-Quandt test can only be performed on large sample data. The 
minimum viable size of the sample is defined as the one where the number 
of cases observed ( n ) is at least twice as many as the number of regression 
coefficients (β’s) to be estimated. Another limitation of this test is that it 
assumes away one of the major and commonly observed problems with 
social sciences data—presence of serial correlation among the error terms.

White’s Test

White’s test is a general test for heteroscedasticity that can detect any 
form of non-constant variance of the error term. It is based on the idea 
that if the error term is heteroscedastic, then the squared residuals will be 
correlated with the independent variables. The test involves regressing the 
squared residuals on the independent variables, their squared terms, and 
their cross-product terms. The null hypothesis is that the coefficients on all 
these terms are simultaneously equal to zero, indicating homoscedasticity. 
The alternative hypothesis is that at least one of these coefficients is non-
zero, indicating heteroscedasticity.

Also known as the heteroscedasticity-consistent (HC) test, is an 
LM test that utilizes the squared residuals along with the product of the 
independent variables (XiXj) to detect heteroscedasticity. It is more general 
than the Breusch-Pagan test and does not require specifying a particular 
form of heteroscedasticity. This test is robust to the presence of non-
normal errors. While the test requires additional computations compared 
to the Breusch-Pagan test, its robustness to non-normal errors can be 
advantageous in certain situations.

Park Test

The Park test assesses the relationship between the variance of the 
errors and one of the independent variables in a logarithmic form. This test 
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requires regressing Yi’s on Xi’s to obtain residuals, e, and then taking the 
natural logarithm of the absolute residuals and regressing it on the natural 
logarithm of one of the independent variables suspected of influencing the 
variance. A significant relationship indicates heteroscedasticity.

Graphical Assessment: Before conducting formal tests, it is often 
valuable to visually assess the presence of heteroscedasticity. Plot the 
residuals against the predicted values (fitted values) to observe any patterns 
suggesting unequal variance. A fan-shaped or cone-shaped pattern in the 
residual plot is a common indicator of heteroscedasticity. The appropriate 
heteroscedasticity test depends on the specific assumptions one is willing 
to make about the nature of the heteroscedasticity.

 	 ➢ Breusch-Pagan test is preferred when assuming a linear relationship 
between the error variance and the independent variables.

 	 ➢ White’s test is more robust when the exact form of the 
heteroscedasticity is unknown.

 	 ➢ Park’s test is helpful in detecting heteroscedasticity arising from 
omitted lagged dependent variables in the model.

These tests are based on different ideas and assumptions, and they can 
detect different forms of heteroscedasticity. It is important to choose the 
appropriate test based on the nature of the data and the research question, 
and to interpret the results carefully.

4.1.2.3.1  Consequences of Heteroscedasticity

The estimates of the parameters are not affected by heteroscedasticity 
as unbiasedness of an estimator is not dependent on constant variance of 
the error term. All that is required is that:

( ) 0= ∀òi icov x i

Since we have already shown that:

1 1 2

Σ
= β +

Σ
òi i

i

xb
x

Therefore, the expected value of the parameter estimate, b1, will give:

( )1 1 12

 Σ
= β + = β Σ 

òi i

i

xE b E
x

Also, for the intercept, we have:
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0 1= −b Y b X

    ( )0 1 1= β +β + −òX b X

Taking expected values, we get:

( ) ( ) ( )0 0 1 1 0= β +β + − = βòE b X E E b X

Despite retaining its unbiasedness, the ordinary least squares estimator 
in the presence of heteroscedasticity, no longer has the least variance 
among the set of all unbiased estimators. That is, it is no longer best. This, 
in turn, makes the predicted value of the outcome variable inefficient. In 
other words, for a given value of the explanatory variable, the predicted 
value of the outcome variable will have high variance as it would subsume 
variances of the true residuals as well as of the parameters themselves.

One consequence of this is that we can no longer test the statistical 
significance of the parameter estimates or construct confidence intervals 
around them. We know that variances of the parameter estimates are given 
as:

( )
2

2
0 2

Σ
= σ

Σ
Xvar b

n x

( ) 2
1 2

1
= σ

Σ
var b

x

In both the equations above, the variance of the residuals could be 
taken out since it was constant; in case of heteroscedasticity, it is no 
longer so. The variance of the estimates will change with change in the 
values of the explanatory variable(s). Therefore, the formulas to calculate 
variances of the estimates are no longer applicable in the presence of 
heteroscedasticity and we cannot test the hypotheses of the parameter 
estimates to be nonzero. 

4.1.2.3.2  Solutions for Heteroscedastic Data

A few commonly used methods researchers use to deal with 
heteroscedasticity are:

Transforming the Dependent Variable: In some cases, 
heteroscedasticity can be stabilized by applying a transformation to 
the dependent variable, such as the logarithmic, square root, or inverse 
transformation. For example:

 	 ➢ Log transformation: ( )* log=Y Y

DDE, P
on

dic
he

rry
 U

niv
ers

ity



Notes

139

 	 ➢ Square root transformation: * =Y Y

 	 ➢ Inverse transformation: =Y
Y

This approach can help reduce heteroscedasticity, but it may also 
introduce interpretation challenges and complicate the model. Additionally, 
they may not work for zero or negative values of the dependent variable 
without adjustments.

Weighted Least Squares (WLS): WLS provides an alternative to 
Ordinary Least Squares (OLS) by weighting each observation inversely 
proportional to its variance. This method involves transforming the 
original regression model by dividing each observation by the square root 
of the corresponding variance of the error term.

The rationale behind WLS is to give more weight to observations with 
smaller variances and less weight to observations with larger variances. 
Let us define the original linear regression model as:

0 1β β ε= + +i i iy x

where iy  is the dependent variable, ix  is the independent variable, 

0β  and 1β  are the regression coefficients, and ε i is the error term with 
( ) 2ε σ=i ivar . The WLS estimator minimizes the following weighted sum 

of squared residuals:

( )2
0 1
2

β β
σ

Σ − −i i i

i

y x

The WLS estimators of 0β  and 1β  are given by:

( ) 11 1ˆ −− −= T T
WLS X X X yβ Ω Ω

where X is the design matrix, y is the vector of dependent variables, and 
Ω  is the diagonal matrix with 2σ i  as the diagonal elements. The limitation 
of WLS is that estimating the correct weights can be challenging and might 
require prior knowledge or assumptions about the variance structure.

Heteroscedasticity-Consistent Standard Errors (HCSE): HCSE are 
robust standard errors that adjust for heteroscedasticity without needing to 
specify a particular form of heteroscedasticity, allowing for valid hypothesis 
testing. This approach involves estimating the regression coefficients using 
Ordinary Least Squares (OLS) but correcting the standard errors of the 
estimates to account for heteroscedasticity.
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The rationale is to obtain valid statistical inferences without 
transforming the original model. Several variants of HCSE exist, such as 
HC0, HC1, HC2, and HC3, which differ in their assumptions about the 
error distribution and the way they estimate the Ω  matrix. The basic HC0 
estimator adjusts the OLS variance-covariance matrix as follows:

( ) ( ) ( )1 1ˆ − −
= T T T

OLSvar X X X X X Xβ Ω

where Ω  is the diagonal matrix with 2ε i  as the diagonal elements, and 
ε i are the OLS residuals.

While HCSE estimators make standard errors more reliable under 
heteroscedasticity, they do not address the inefficiency of the coefficient 
estimates themselves.

Generalized Least Squares (GLS): GLS extends OLS by assuming 
a specific form of heteroscedasticity and possibly correlation among 
the error terms, leading to more efficient estimates when the form of 
heteroscedasticity is correctly specified.

This method involves transforming the original regression model 
to obtain a new model with homoscedastic errors, and then applying 
OLS to the transformed model. The rationale is to directly address the 
heteroscedasticity issue and obtain efficient parameter estimates. To 
illustrate, let’s assume that the variance of the error term is a known 
function of the independent variables:

( ) ( )2 ,ε σ θ=i ivar g x

where ( ),θig x  is a specified function of the independent variables 

ix  and a vector of unknown parameters θ . The GLS estimator involves 
dividing the original model by the square root of ( ),θig x :

( ) ( ) ( ) ( )
0

1
, , , ,

β εβ
θ θ θ θ

 
 = + +
 
 

i i i

i i i i

y x
g x g x g x g x

The GLS estimator of 0β  and 1β  is then obtained by applying OLS to the 
transformed model. The limitation of GLS is that it requires knowledge 
or assumptions about the form of the variance-covariance matrix, which 
might not be accurately known in practice.

Robust Standard Errors: This approach involves estimating the 
regression coefficients using OLS and then computing standard errors 
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that are robust to heteroscedasticity and potential misspecification of the 
error distribution. The rationale is to obtain valid statistical inferences 
without making strong assumptions about the error distribution or the 
form of heteroscedasticity. The robust standard errors are computed using 
the Huber-White sandwich estimator:

( ) ( ) ( )1 1
β̂ Ψ

− −
= T T T

OLSvar X X X X X X

where Ψ  is a diagonal matrix with ψ i  as the diagonal elements, and ψ i 
are the squared residuals multiplied by a weight function that downweighs 
large residuals.

The limitation of robust standard errors is that they do not improve 
the efficiency of the OLS estimator; they only provide valid statistical 
inferences under heteroscedasticity and potential misspecification of the 
error distribution.

Bootstrapping: Bootstrapping is a non-parametric approach that 
involves repeatedly resampling the dataset with replacement and estimating 
the model on each sample. It can provide robust estimates of the standard 
errors without assuming a particular form of heteroscedasticity.

Bootstrapping can be computationally intensive, especially for large 
datasets or complex models. Moreover, its effectiveness depends on the 
representativeness of the bootstrap samples and the stability of the model 
estimates across these samples.

Each method has its strengths and limitations, and the choice among 
them depends on the specific circumstances of the data and research 
question. In practice, researchers often start with diagnostic tests to detect 
the presence of heteroscedasticity and then choose an appropriate method 
based on the nature of the problem and the available information about 
the error variance structure. Often, researchers may employ more than 
one of these methods to robustly check the consistency of their findings 
under different assumptions about the variance of the residuals.

When dealing with heteroscedasticity, it is crucial to diagnose the 
issue correctly and choose the appropriate remedy based on the specific 
characteristics of the data and research question. It is also essential to 
ensure that the assumptions of the chosen method are met to obtain valid 
and reliable results.
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4.1.2.4  Normally Distributed Error Term

The classical statistical tests used to perform checks on the estimated 
coefficients of the regression model are all parametric in nature, meaning 
thereby that they assume certain form of probability distribution for the 
data they analyze. Most parametric tests assume that the test statistics that 
they calculate are distributed normally or the specific distribution that 
the statistics follow are derived from some form of normal distribution. 
For example, the 2χ  distribution arises from the sum of the squares of 
independent standard normal random variables; the F-distribution is 
generated by a ratio of two random variables that follow 2χ  distribution.

Recall that we found that the ordinary least squares estimator is 
distributed normally with its expected value (mean) being the true 
population parameter:

2
2

2~ ,
 Σ
β σ Σ 

Xb N
n x

where 2σ  is really the variance of the residuals, which in turn is 
assumed to be distributed normally with its mean equal to zero:

( )2~ 0,σ ∀òi N i

Figure 5: Normally Distributed Errors 

Therefore, our ability to test statistical significance of regression estimates 
stems from the error terms being distributed normally. Thus, irrespective 
of the X values, the distribution of ò’s not only has a common mean (0) 
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and common variance ( 2σ ), but is also distributed normally:

There are indirect ways of checking this; indirect because the error 
terms are not observable. Following are the most commonly employed 
tests to assess the normality of residuals:

Shapiro-Wilk Test

This test is a popular choice for assessing the normality of residuals. It 
calculates a W-statistic based on the ordered residuals and compares it to 
a critical value from a reference table.

( )( )
( )

2

1

2

1

=

=

Σ
=

Σ −

n
i i i

n
i i i

a x
W

a x

Where, ( )ix  is the thi  order statistic and the coefficients, ai’s are computed as:

( )
1

1 2, , ,
−

… =
T

n
m Va a a

C

Where:

( )
1

1 1 2− −= TC m V V m

( )1 2, , ,= … T
nm m m m

The null hypothesis is that the residuals are normally distributed. 
The test performs well for smaller sample sizes (n < 50) and the result is 
relatively easy to interpret and implement. But the major drawback of this 
test is that it is less powerful for larger sample sizes, where even minor 
deviations from normality might be flagged as significant and its results 
are sensitive to outliers in the residuals.

Kolmogorov-Smirnov Test (K-S Test)

This non-parametric test compares the empirical cumulative 
distribution function (ECDF) of the residuals with the theoretical CDF of 
a normal distribution. It calculates a D-statistic representing the maximum 
absolute difference between the two distributions.

	
( ) ( )= −n n

sup
D F x F x

x

Where 
sup
x  is the supremum of the set of distances and ( )nF x  is defined 

as an IID function:
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( ) ( ] ( ),
1

1 1 −∞
=

= ∑n ix
i

F x X
n

The test makes no assumptions about the underlying distribution and 
can be used for small sample sizes. However, it is less powerful than the 
Shapiro-Wilk test for normality. The results are also sensitive to the choice 
of bin size in the ECDF calculation.

Anderson-Darling Test

This test utilizes a squared difference between the ECDF of the 
residuals and the theoretical normal CDF. It provides a statistic (A²) that 
is asymptotically chi-square distributed under the null hypothesis of 
normality.

2 = − −A n S

Where:

( )( ) ( )( )1
1

2 1 1 + −
=

−  = + − ∑
n

i n i
i

iS ln F Y ln F Y
n

The nonparametric counterpart, k-samples test, computes the test statistic 
as:

( )
( )

2
1

2

1 1

1 1 −

= =

−
=

−∑ ∑
k N

ij i
kN

i ji

NM jn
A

N n j N j

It is more powerful than the K-S test for normality assessment, its 
major advantage being sensitive to deviations from normality across the 
entire distribution, not just the tails. But this sensitivity makes it more 
sensitive to sample size, too, than the Shapiro-Wilk test—it requires larger 
sample sizes for reliable results.

Normal Quantile-Quantile Plot

This graphical technique is a valuable tool for visually assessing the 
normality of residuals. It plots the quantiles of the residuals against the 
quantiles of a standard normal distribution. Ideally, the points should fall 
roughly along a straight line, indicating a normal distribution. Deviations 
from the line suggest non-normality (see Figure–3).DDE, P
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Figure 6: Normal Q-Q Plot of the Residual

This Photo by Unknown Author is licensed under CC BY

The appropriate test for normality of residuals depends on various 
factors, including:

 	 ➢ Sample Size: The Shapiro-Wilk test is preferred for smaller samples, 
while the Anderson-Darling test might be better for larger samples.

 	 ➢ Sensitivity to Outliers: The Shapiro-Wilk test is more sensitive to 
outliers than the K-S test.

 	 ➢ Visual confirmation: Regardless of the chosen test, a normal 
Q-Q plot is highly recommended for visual confirmation of the 
normality assumption.

While these tests assess normality, a slight deviation might not be a 
major concern, especially for larger sample sizes. The focus should be on 
substantial departures from normality that could invalidate inferences. 
Transformations of the data (e.g., log transformation) can sometimes 
achieve normality if the non-normality arises from a specific functional 
form.

4.1.3  Summary

The Classical Linear Regression Model (CLRM) forms the 
foundation of econometric analysis, providing a structured approach to 
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understanding relationships between a dependent variable and one or 
more independent variables. At its core, CLRM represents a mathematical 
equation that links a dependent variable, Y, representing the outcome of 
interest, to independent variables, 1 2, , ,… kX X X , which are thought to 
influence Y. The model is linear, both in parameters ( 0 1, , ,β β … βk) and 
variables, simplifying its estimation and interpretation. The equation, 

0 1 1 2 2= β +β +β +…+β +òk kY X X X , captures this relationship, where 
ò signifies the error term accounting for deviations from the estimated 
model due to factors not included in the regression.

Central to the utility and validity of CLRM are its assumptions, which 
guarantee the model’s estimators are the Best Linear Unbiased Estimators 
(BLUE). These assumptions include the linearity in parameters, the 
error term’s independence, and identical distribution with a zero mean, 

( )20,σIID , homoscedasticity (constant variance of error terms), and no 
perfect multicollinearity among independent variables.

A crucial feature of CLRM is the error term \epsilon, which embodies 
all the variation in Y not explained by the model. This includes omitted 
variable bias, measurement errors, and the intrinsic randomness of the 
dependent variable. For the model to provide unbiased and efficient 
estimates, it’s imperative that the error term is IID with a zero mean 
and constant variance. This ensures that on average, the model does not 
systematically overestimate or underestimate the dependent variable, and 
the precision of estimates remains consistent across observations.

The assumption of no perfect multicollinearity is vital for the 
estimation process. It ensures that each independent variable contributes 
unique information to explaining Y, allowing for the clear identification 
and estimation of their effects. Violating this assumption would render 
some parameters indeterminate, as the linear relationship among some 
independent variables could infinitely satisfy the regression equation.

Moreover, the assumption that the error term is normally distributed 
facilitates the application of various statistical tests, such as t-tests 
and F-tests, which rely on normality assumptions for deriving their 
distributions under the null hypothesis. Although this assumption is 
not strictly necessary for the OLS estimator to be BLUE, it is crucial for 
conducting hypothesis testing and constructing confidence intervals 
around the parameter estimates.
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In practice, these assumptions are tested using diagnostic tests and 
graphical analysis. For instance, the presence of heteroscedasticity can be 
examined through plots of residuals versus fitted values or using formal 
tests like the Breusch-Pagan or White test. Similarly, the normality of 
residuals can be assessed using the Shapiro-Wilk or Kolmogorov-Smirnov 
tests, among others. When assumptions are violated, alternative estimation 
techniques or transformations of the data may be employed to rectify the 
issues, ensuring the robustness of the model’s estimates.

While CLRM provides a powerful tool for analyzing linear relationships, 
careful attention must be paid to its underlying assumptions. Adherence 
to these assumptions ensures that the model yields reliable, interpretable, 
and meaningful results that can inform decision-making and contribute 
to our understanding of complex phenomena in economics and other 
disciplines. Through empirical testing and adjustment, researchers can 
address the limitations of the classical model, enhancing the accuracy and 
applicability of their analyses in real-world scenarios.

4.1.4  Keywords

Classical Linear Regression Model (CLRM): A statistical framework 
for modeling the relationship between a dependent variable and one 
or more independent variables in a linear fashion.

Nonstochastic Independent Variables: The idea that independent 
variables are fixed in repeated sampling, not random.

Randomness of the Error Term: The principle that the errors in the 
predictions of the dependent variable are random and not systematic.

Zero Mean of the Error Term: The assumption that the average of the 
error terms is zero, ensuring unbiased estimates.

Homoscedasticity: The assumption that the error term has a constant 
variance across all levels of independent variables.

Heteroscedasticity: A violation of the equal variance assumption, 
where the error term’s variance changes across the range of independent 
variables.

Normally Distributed Error Term: The assumption that the error 
term is normally distributed, facilitating certain statistical tests.DDE, P
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IID (Independent and Identically Distributed): Describes the error 
terms having the same probability distribution and being mutually 
independent.

Autocorrelation (Serial Correlation): A condition where error terms 
are correlated with each other across observations, violating the 
assumption of independent errors.

Diagnostic Testing: Procedures used to check whether the assumptions 
of the CLRM are met in the estimated model, including tests for 
homoscedasticity, normality of errors, and autocorrelation.

Spearman’s Rank Correlation Test: A nonparametric test used to 
detect heteroscedasticity by assessing the correlation between the 
ranks of absolute residuals and the ranks of predictor variables.

Breusch-Pagan Test: A test for heteroscedasticity that regresses 
squared residuals on independent variables and their squared values 
to check if variances of the errors are constant.

White’s Test: A test for heteroscedasticity that does not require 
specifying a model for the variance of the errors. It uses the squared 
residuals from the regression model as dependent variables in a new 
regression against the original independent variables and their squares 
and cross-products.

Durbin-Watson Test: A statistical test used to detect the presence 
of autocorrelation (specifically, first-order serial correlation) in the 
residuals from a regression analysis.

Glejser Test: A test for heteroscedasticity that involves regressing the 
absolute values of the residuals from the original regression on the 
independent variables or functions of them to check for a systematic 
relationship between the variance of the errors and the independent 
variables.

Goldfeld-Quandt Test: A test for detecting heteroscedasticity by 
dividing the data set into two or more groups and comparing the 
variances of the errors across these groups.

Park Test: A test for heteroscedasticity that involves regressing the 
log of the squared residuals on the log of one or more independent 
variables to identify a variance that changes with the level of an 
independent variable.
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Lagrange Multiplier (LM) Test: A general test used in econometrics 
to test for the presence of omitted variables, autocorrelation, 
heteroscedasticity, and other misspecifications in a regression model.

4.1.5  Self-assessment Questions

1.	 What does the assumption of linearity in parameters mean for a 
CLRM?

2.	 Explain why the assumption of the error term having zero mean is 
crucial in CLRM.

3.	 Describe homoscedasticity. Why is it important in regression 
analysis?

4.	 Define the term “Best Linear Unbiased Estimators” (BLUE). What 
conditions must be met for OLS estimators to be BLUE?

5.	 What are the implications of violating the normality assumption of 
the error term in CLRM?

6.	 What statistical test can be used to detect the presence of 
heteroscedasticity in a regression model?

7.	 Why is it problematic if independent variables are not nonstochastic 
in the context of CLRM?

8.	 Given a simple regression output where the estimated regression 
equation is   2  3= +Y X , calculate the predicted value of Y when 

4=X .

9.	 A regression model reports 2 0.85=R . Explain what this tells you 
about the model’s fit.

10.	 You have a dataset with the following observed values for Y 
(dependent variable): 10, 20, 15, 25, and the predicted values of Y 
based on your model are 12, 18, 16, 22. Calculate the Mean Squared 
Error (MSE) of your model.

11.	 If the standard error of the coefficient for a predictor X in a 
regression model is 2.5 and the estimated coefficient is 10, calculate 
the t-statistic for testing the null hypothesis that the coefficient of 
X is zero.

12.	 The table below gives the monthly income and consumption 
expenditure of a household from a survey on consumption patterns:DDE, P
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t Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Ct 29 26 35 39 46 42 60 73 54 50 69 64

Yt 43 60 71 86 102 60 109 115 66 71 77 94

	 Estimate the savings function, ( )=t tS f Y , and use the Spearman’s 
Rank correlation to test for presence of heteroscedasticity in the 
dataset.

13.	 For the savings-income data below, use the Glejser’s Test to check 
for heteroscedasticity.

Household Savings Income

1 2225 19271

2 2231 28528

3 1158 20720

4 1771 29848

5 409 22046

6 2222 8850

7 1100 11367

8 884 24423

9 712 14163

10 1106 16102

11 788 24098

12 936 22386

13 1623 33212

14 1384 37812

15 2073 11516

16 1387 19696

17 568 14791

18 2022 21498
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Household Savings Income

19 1560 15557

20 439 17810

21 855 13536

22 2148 8980

23 406 26748

24 657 22995

25 1111 14175

26 1906 33338

27 1150 29899

28 1874 34361

29 1623 20686

30 826 24075

14.	 Following is the monthly rental of flats in a neighborhood which 
may or may not have a vehicle parking along with it:

Flat No. Monthly 
Rent

Number of 
Rooms

Vehicle Parking

1 31588 4 0

2 34903 1 1

3 24882 3 1

4 17355 5 1

5 22583 2 0

6 29766 4 1

7 14247 3 1

8 24354 2 1

9 22034 3 0

10 16409 1 1
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Flat No. Monthly 
Rent

Number of 
Rooms

Vehicle Parking

11 16335 5 1

12 10385 1 0

13 13736 2 0

14 18900 2 0

15 35542 5 1

16 21660 3 1

17 22523 1 0

18 14748 2 0

19 27848 2 1

20 29357 4 1

21 30067 1 1

22 11975 1 0

23 18789 4 0

24 22914 2 0

25 32887 4 1

26 30084 1 0

27 16833 3 0

28 32738 2 0

29 16852 3 0

30 21265 1 1

31 31528 3 0

	 The vehicle parking is a dummy variable that takes the value 
1 if the flat includes a parking spot in the apartment, and 0 if 
it does not. Use the data to estimate the regression equation: 

( ) ( )1 2= + + +oRent b b Rooms b Parking e. Use the Goldfeld-Quandt 
Test to check for heteroscedasticity in the dataset.
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15.	 Twenty farming lots were planted with cabbage seeds and were 
watered and catalyzed with urea. The yield (in tons), urea 
consumption (in kilograms), and water usage (in liters) is given in 
the table below:

Farm Lot Yield Urea Water

1 58.83 17 222

2 81.58 48 70

3 61.16 7 117

4 51.18 28 294

5 67.02 18 168

6 65.4 18 266

7 62.99 43 234

8 81.79 25 67

9 97.78 11 49

10 44.12 31 214

11 86.63 35 79

12 45.73 33 287

13 59.66 34 67

14 53.38 41 113

15 42.17 4 42

16 98.06 28 87

17 45.73 18 77

18 83.91 42 67

19 99.41 17 237

20 90.54 39 234

	 Estimate the production function: yield = b0 + b1 (urea) =  
b2 (water) = e. Test for the presence of heteroscedasticity using (a) 
the Spearman’s Rank Correlation Test and (b) the Glejser’s Test. 
Compare the results of the two tests.
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16.	 For the patients in an obesity reduction program, a minimum of 1 
minute of cardio exercise and walking at least 1000 steps in day was 
mandated. At the end of the day, a measurement of total calories 
burnt due to physical activity was recorded. Below is the data for 15 
patients enrolled in the program: 

Patient 
No.

Calories 
Burnt

Exercise 
Minutes

Steps 
Walked

1 1997 5 7747

2 1915 31 7755

3 2446 6 3186

4 2648 1 11388

5 1512 22 1527

6 2008 33 4630

7 2712 20 10786

8 2213 18 12696

9 2439 27 3478

10 2181 39 1126

11 2767 38 10368

12 2577 9 4759

13 1934 5 2578

14 2073 16 9123

15 2302 25 4751

	� Estimate the energy consumption function: calorie = b0 + b1 (exercise) +  
b2 (steps) + e. Use the data to estimate the form of heteroscedasticity 
present.

4.1.6  References

1.	 Principles of Econometrics by R. Carter Hill, William E. Griffiths, 
and Guay C. Lim. This textbook provides a solid foundation in the 
basic principles of econometrics, including a clear explanation of 
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the assumptions underlying the CLRM and the importance of these 
assumptions for statistical inference.

2.	 Econometric Methods with Applications in Business and 
Economics by Christiaan Heij, Paul de Boer, Philip Hans 
Franses, Teun Kloek, and Herman K. van Dijk. This book offers a 
comprehensive overview of econometric methods, including linear 
regression models, with an emphasis on applications in business 
and economics. It’s known for its practical approach and use of case 
studies.

3.	 Mostly Harmless Econometrics: An Empiricist’s Companion by 
Joshua D. Angrist and Jörn-Steffen Pischke. This book provides 
an intuitive approach to understanding econometric methods, 
including linear regression and its assumptions, focusing on how 
these tools are applied in empirical research. It’s well-regarded for 
its clarity and humor, making complex concepts more accessible.

4.	 Econometric Theory and Methods by Russell Davidson and James 
G. MacKinnon. This textbook provides a rigorous treatment of 
econometric theory, including the assumptions and estimation of 
linear regression models. It’s suitable for advanced undergraduates 
and graduate students seeking a deeper theoretical understanding.

5.	 Econometrics by Example by Damodar N. Gujarati. Gujarati’s 
book is known for its clear and practical approach to econometric 
concepts, including the CLRM. Each chapter introduces 
econometric methods through real-world examples, making it an 
excellent resource for learners who prefer an applied perspective.
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Lesson 4.2 – Nonstochastic Assumptions of the Classical Linear 
Regression Model

Structure

4.2.1	 Introduction

4.2.1	 The Assumption of Serial Independence

4.2.2	 Consequences of Autocorrelation

4.2.3	 Tests for Autocorrelation

4.2.4	 Estimation with Autocorrelation

4.2.5	 The Assumption of Non-multicollinear Regressors

4.2.6	 Consequences of Multicollinearity

4.2.7	 Tests for Multicollinearity

4.2.8	 Solutions for Multicollinear Data

4.2.9	 Summary

4.2.10	 Keywords

4.2.11	 Self-assessment Questions

4.2.12	 References

4.2.1  Introduction

The classical linear regression model relies on a set of assumptions 
to ensure valid statistical inference. Among these, the non-stochastic 
assumptions deal specifically with the independent variables (also known 
as regressors) in the model, denoted by the matrix X. These assumptions 
are called “non-stochastic” because they relate to the independent 
variables, or the X variables, which are assumed to be fixed and not subject 
to random variation. The main non-stochastic assumptions in the classical 
linear regression model are:

1.	 Correct Model Specification: The model correctly specifies 
the functional form and includes all relevant variables while 
excluding irrelevant ones. Incorrect specification, such as omitting 
a relevant variable or including an irrelevant one, can lead to 
biased and inconsistent parameter estimates. This assumption also 
encompasses the correct form of the relationship (e.g., linear or 
log-linear) and the absence of measurement errors in the variables. 
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If the model is mis-specified by omitting important variables or 
including irrelevant ones, it can lead to biased and inconsistent 
estimates of the regression coefficients.

2.	 Linear in Parameters: The model is assumed to be linear in 
parameters, meaning the relationship between the independent 
variables (explanatory variables) and the dependent variable is 
linear. This does not mean the variables themselves must be linear; 
transformations can be applied. The assumption is about the 
parameters (coefficients), which should appear in a linear fashion 
in the equation.

3.	 Fixed and Deterministic X: This assumption states that the 
values of the independent variables in the sample are fixed and 
known without error. In essence, X is treated as a constant matrix. 
This implies there’s no measurement error associated with the 
independent variables. It also eliminates the possibility of using 
lagged values of the dependent variable (y) as independent variables, 
which would induce serial correlation.

4.	 No Endogeneity: This assumption refers to the absence of a two-
way causal relationship between the independent variables and 
the dependent variable. The independent variables are assumed to 
solely influence the dependent variable, not the other way around. 
Endogeneity, if present, violates this assumption. It can arise when 
the independent variables are correlated with the error term, leading 
to biased estimates. In other words, the independent variables are 
assumed to be determined outside the model and are not influenced 
by the error term. Mathematically, this can be expressed as: E(ε | X1, 
X2, . . . Xk) = 0. If this assumption is violated, it can lead to biased 
and inconsistent estimates of the regression coefficients, as the 
independent variables may be correlated with unobserved factors 
that are captured in the error term.

5.	 No Multicollinearity: This assumption ensures that the independent 
variables in X are not perfectly linearly dependent on each other. 
Perfect collinearity (where one variable can be expressed as an 
exact linear combination of others) would prevent the model from 
uniquely estimating the coefficients (β’s). Even high collinearity 
(strong correlation between independent variables) can cause 
problems like inflated variances and imprecise coefficient estimates.
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6.	 Full-Rank X: This assumption requires the number of observations 
(N) in your sample to be greater than the number of independent 
variables (k) in the model (T>k). Additionally, the rank of the X 
matrix must be equal to the number of independent variables (rank 
(X) = k). This ensures that there are no redundant rows or exact 
linear relationships within the independent variables, which would 
again hinder the estimation process. In other words, no explanatory 
variable is a perfect linear combination of the others, that is, no 
perfect multicollinearity exists among the explanatory variables.

These non-stochastic assumptions are foundational for the classical 
linear regression analysis. Econometricians have developed various 
diagnostic tests and remedies for these issues, such as:

 	 ➢ Tests for linearity to check if the linear model is appropriate.

 	 ➢ Tests for multicollinearity, such as the Variance Inflation Factor 
(VIF).

 	 ➢ Specification tests to detect omitted variables or incorrect functional 
forms, like the Ramsey RESET test.

 	 ➢ Instrumental variables (IV) estimation or other methods to address 
endogeneity.

Violations of these assumptions can lead to biased and inefficient 
estimates, potentially rendering the inferences unreliable. We limit 
our discussion to only the assumptions of serial independence and 
multicollinearity, detecting their violations, consequences of their 
violations, and available remedies.

4.2.1  The Assumption of Serial Independence

Serial independence (often called lack of serial correlation or lack 
of autocorrelation) refers to the assumption that the error terms in a 
linear regression model are uncorrelated with each other over time or 

across observations. Mathematically, it implies that for all error terms òi  
and òj in the model, where ≠i j, the covariance between òi and òj is zero, 

i.e., ( ), 0=ò òi jcov    ∀ ≠i j. This assumption ensures that the errors are 
independent across observations and that there is no pattern (like a trend 
or cyclical movement) in the residuals that could be predictive of other 
residuals. In simpler terms:
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 	 ➢ There should be no systematic pattern in the way the error terms 
are related to one another.

 	 ➢ The error at one point in time should not provide information 
about the error at another point in time.

The serial independence assumption is often referred to as the “no 
autocorrelation” assumption because it implies that there is no correlation 
between the error terms across different time periods or observations.

While the key non-stochastic assumptions place strict conditions on the 
independent variables (X matrix), the assumption of serial independence 
specifically deals with the behavior of the error terms (ε) in the model. 
But, recall that a core non-stochastic assumption is that the independent 
variables are fixed and predetermined. This means any randomness 
in the model is intended to be fully captured by the error term. If the 
error terms exhibit serial correlation, it means that the value of the error 
at one observation is influenced by errors at other points. This suggests 
that there’s a systematic pattern or information left unexplained by the 
independent variables in the model. Essentially, it signals that there might 
be additional variables or dynamics not included in your X matrix that 
are affecting the dependent variable. Thus, the assumption of fixed and 
deterministic X matrix boils down to the assumption of no autocorrelation 
among the error terms.

4.2.2  Consequences of Autocorrelation

Violation of this assumption, known as serial correlation or 
autocorrelation, can occur in situations where the error terms are 
correlated over time or across observations. In time-series data or panel 
data, where observations are ordered sequentially, the error terms may 
exhibit a pattern or dependence on previous error terms. For example, 
economic data collected over time, such as GDP, inflation rates, or stock 
prices, often exhibit autocorrelation because past values influence current 
values.

Serial correlation can arise due to various reasons, such as omitted 
variables, misspecification of the model, or the presence of dynamics or 
persistence in the dependent variable or error terms.

The presence of serial correlation in the error terms can lead to several 
issues:
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1.	 Inefficient estimates: The ordinary least squares (OLS) estimators, 
while still unbiased, are no longer efficient (minimum variance) in 
the presence of serial correlation.

2.	 Invalid statistical inferences: The standard errors of the estimated 
coefficients and hypothesis tests become unreliable, leading to 
invalid statistical inferences.

3.	 Biased estimates: In some cases, such as when the lagged dependent 
variable is included as an independent variable, serial correlation 
can lead to biased estimates of the coefficients.

Violations of this assumption can lead to inefficient parameter estimates 
and incorrect inferences about the relationship between the dependent 
variable and the independent variables. Therefore, it is important to 
test for serial independence and to apply the appropriate remedies if the 
assumption is violated.

4.2.3  Tests for Autocorrelation

Understanding and addressing serial independence is vital in 
econometric modeling to ensure the accuracy and reliability of the analysis, 
especially in time series data where autocorrelation is more prevalent. 
Plotting residuals (errors) against time or observation order can reveal 
patterns such as trends, cycles, or clustering suggesting serial correlation.

The simplest possible case of autocorrelation is the presence of linear 
correlation between two successive values in time of the error terms. Such 
a relationship can be represented as:

1 å−= ρ +ò òt t t εt

called the first order autoregressive relationship; ρ being the true 
population autocorrelation coefficient. The error term, ε, satisfies all the 
assumptions of the classical linear regression model:

( ) 0ε =E

( )2 2
εε = σE

( ) 0ε ε = ∀ ≠i jE i j

Therefore, if 0ρ = , = εt tò , and since εt  is not autocorrelated, by extension, 
òt  is also not autocorrelated. The population autocorrelation coefficient 
can be estimated as:
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To detect serial correlation, econometricians typically use diagnostic 
tests, such as:

The Von Neumann Ratio

The von Neumann Ratio test is a statistical test used to detect the 
presence of first-order autocorrelation (serial correlation) in time series 
data or within the residuals of a regression model.  The Von Neumann 
Ratio test is based on the ratio of the mean square successive difference to 
the variance of the time series. The test statistic is given by:

( )

( )

2
2 1
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n

The ratio is calculated applicable to directly observed non-
autocorrelated data in a series. Since the error terms are not directly 
observable, their estimates can be used to approximate the ratio as:
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Where:

 	 ➢ te : residual at time t

 	 ➢ ( )1−te : Residual at time 1−t

 	 ➢ e : Mean of the residuals

The Von Neumann ratio tests for the randomness of a sequence, where 
randomness implies the absence of autocorrelation. The logic is that if 
there’s no autocorrelation, successive differences between residuals should 
be random. If there’s positive autocorrelation, successive differences will 
tend to be small (as positively correlated values stay close to each other, 
successive observations are similar). If there’s negative autocorrelation, 
successive differences will tend to be large (that is, successive observations 
differ significantly) with values oscillating.
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The test statistic of the Von Neumann ratio test, under the null 
hypothesis of independence (i.e., no autocorrelation), asymptotically 
follows a normal distribution for large sample sizes. Specifically, when 
the number of observations n is large, the distribution of the test statistic 
approaches normality due to the Central Limit Theorem. This property 
allows for the derivation of critical values and the assessment of statistical 
significance based on the normal distribution.

However, for the Von Neumann ratio specifically, the expected value 
under the null hypothesis of no autocorrelation is close to 2, and its 
variance can be expressed as a function of the sample size n. For practical 
purposes, when using this test, one often refers to tabulated values or 
specific statistical software to determine the critical values for the test 
statistic that correspond to conventional levels of statistical significance 
(e.g., α = 0.05).

While the normal distribution approximation works well for large 
sample sizes, for smaller samples, the exact distribution of the test statistic 
might need to be considered, and the critical values can be different from 
those suggested by the normal approximation. The use of simulation or 
bootstrap methods can also help in assessing the distribution of the test 
statistic and its critical values for smaller samples or when a high level of 
accuracy is required. The von Neumann Ratio will generally be between 
0 and 4.

 	 ➢ A value close to 2 indicates no autocorrelation.

 	 ➢ A value below 2 suggests positive autocorrelation.

 	 ➢ A value above 2 suggests negative autocorrelation.

The von Neumann Ratio test is primarily designed to detect first-
order autocorrelation. It might not be as powerful in detecting higher-
order autocorrelation or more complex patterns. The Durbin-Watson test 
is a commonly used alternative that is closely related to the von Neumann 
Ratio test.

The Durbin-Watson Test

The Durbin-Watson test, named after James Durbin and Geoffrey 
Watson, is a statistical test used to detect the presence of first-order 
autocorrelation (serial correlation) in the residuals of a linear regression 
model. Both Von Neumann Ratio test and the Durbin-Watson test 
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address the same issue: detecting first-order autocorrelation. They 
are mathematically related, with the Durbin-Watson statistic being a 
transformation of the von Neumann Ratio. The Durbin-Watson test is 
more widely used due to its simpler interpretation and readily available 
critical values. The Durbin-Watson statistic (DW) is calculated as follows:

( )( )
( )
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2
1
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Σ −

n
t t t

n
t t

e e
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e e

Where:

 	 ➢ te : residual at time t

 	 ➢ ( )1−te : Residual at time 1−t

 	 ➢ e : Mean of the residuals

Thus, the Von Neumann Ratio and the Durbin-Watson test statistic 
are related as:

2

2
1δ  − =   

  

nDW
S n

( )

( )

2
2 1

2
1

11
= −

=

 Σ −
  − − =    Σ −
 
 

n
i t t

n
i t

e e
nn

ne e
n

( )( )
( )

2

2 1

2
1

= −

=

Σ −
=

Σ −

n
t t t

n
t t

e e

e e

For large sample size, 1≈ −n n , thus the Durbin-Watson test statistic 
tends to the Von Neumann ratio asymptotically. The DW statistic ranges 
from 0 to 4; a value of 2 implies no autocorrelation ( ˆ 0ρ = ), while 2<DW   
suggests positive autocorrelation (residuals tend to be positively correlated 
with their neighbors), and 2>DW   suggests negative autocorrelation 
(residuals tend to be negatively correlated with their neighbors). That is:

2 4 1 1ρ̂≤ ≤ ≡ − ≤ ≤DW

The Durbin-Watson statistic does not follow a simple statistical 
distribution. Instead, we rely on critical values provided by Durbin and 
Watson in statistical tables or by a statistical software. These critical values 
depend on the sample size and the significance level chosen (usually 0.05 
or 0.01). There are two sets of critical values:
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 	 ➢ Lower Critical Value ( LDW )

 	 ➢ Upper Critical Value ( UDW )

We compare DW with the critical values and if:

 	 ➢ > UDW DW : we do not reject the null hypothesis (no 
autocorrelation).

 	 ➢ < LDW DW : we do not accept the null hypothesis (evidence of 
positive autocorrelation).

 	 ➢ < <L UDW DW DW : then the test is inconclusive (weak evidence 
for autocorrelation, may need a larger sample size or alternative 
tests).

The Durbin-Watson test is applicable to linear regression models where 
the residuals are assumed to be independently and identically distributed 
(i.i.d.). It may not be as sensitive to higher-order autocorrelation or more 
complex patterns. The test is particularly useful in time series analysis 
where autocorrelation is a common concern. The interpretation of the 
DW statistic relies on critical values, which can be affected by factors like 
sample size and the presence of constant terms in the regression model. 
The test is not suitable for models with lagged dependent variables as an 
explanatory variable. In such cases, alternative tests like Durbin’s h-test are 
more appropriate. In case of higher order correlations, a more general test, 
such as the Breusch-Godfrey Test, is more appropriate.

Breusch-Godfrey Test

The Breusch-Godfrey Test is an extension of the Durbin-Watson test, 
which only detects first-order autocorrelation. The Breusch-Godfrey Test 
can detect autocorrelation up to any specified order. To calculate the test 
statistic, we estimate the original linear regression model and obtain the 
residuals and then specify the order of autocorrelation to be tested (p). 
We, then regress the residuals on the original regressors and their lagged 
values up to order p and calculate the test statistic using the formula:

	 ( ) ( )2 21 ~ χ= − −BG n p R p

where:

 	 ➢ n is the sample size,

 	 ➢ p is the order of autocorrelation,
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 	 ➢ R2 is the coefficient of determination from the auxiliary regression, 
and

 	 ➢ ( )2χ p  is the chi-squared distribution with p degrees of freedom.

The decision criteria for the Breusch-Godfrey Test is as follows: if 
the test statistic BG is greater than the critical value from the chi-squared 
distribution with p degrees of freedom, reject the null hypothesis (H0) 
of no autocorrelation; if the test statistic BG is less than or equal to the 
critical value, fail to reject the null hypothesis (H0) of no autocorrelation.

Alternatively, an F-test can be applied to assess the joint significance of 
the lagged residuals in the auxiliary regression. The formula for the F-test 
statistic is:

( )

( )

0 1

1

−

=

− −

RSS RSS
pF RSS

n k p

where:

 	 ➢ RSS0​​ is the residual sum of squares from the original regression 
model without lagged residuals,

 	 ➢ RSS1​ is the residual sum of squares from the auxiliary regression 
model that includes the lagged residuals,

 	 ➢ p is the number of lagged residual terms (degrees of freedom for the 
numerator),

 	 ➢ n is the sample size,

 	 ➢ k is the number of independent variables in the original model 
(excluding the constant term and the lagged residuals), and

 	 ➢ (n–k–p) is the degrees of freedom for the denominator.

This F-test statistic is used to determine if the lagged residuals are 
jointly significant, indicating the presence of serial correlation. This 
is suitable for small sample sizes. If the calculated F-statistic is greater 
than the critical value from the F-distribution for the given degrees of 
freedom and significance level, the null hypothesis of no serial correlation 
is rejected.

The Breusch-Godfrey Test is widely applicable in time-series analysis 
and other situations where autocorrelation is a concern. However, it has 
some limitations:

DDE, P
on

dic
he

rry
 U

niv
ers

ity



Notes

166

 	 ➢ It assumes that the error terms are normally distributed, which may 
not be true in all cases.

 	 ➢ It is sensitive to the choice of the order of autocorrelation, p. If p is 
chosen incorrectly, the test may not detect existing autocorrelation.

 	 ➢ The test may have low power in small samples, making it difficult 
to detect autocorrelation when it exists.

Despite these limitations, the Breusch-Godfrey Test remains a popular 
and useful tool for detecting autocorrelation in linear regression models.

Ljung-Box Test

The Ljung-Box test (also known as the Ljung-Box Q test or the 
modified Box-Pierce test) is a statistical method used to investigate the 
presence of autocorrelation (serial correlation) in a time series or in the 
residuals of a fitted model.

The Ljung-Box test helps determine whether the residuals of a model 
exhibit autocorrelation. The basic idea is that if there is no significant 
autocorrelation, the residuals should be random. If there is significant 
autocorrelation, there is likely a pattern in the residuals, and the model 
has not fully captured all the structure in the data.

The Ljung-Box tests the null hypothesis that the data is independently 
distributed (no serial correlation) against the alternative hypothesis of 
serial correlation up to a specified lag. It is also used to determine the 
appropriate lag order for an autoregressive moving average (ARMA) model 
or other time series models. The test statistics is calculated as:

( )
2

1

2
ˆ

=

ρ
= +

−∑
h

k

k

Q n n
n k

where:

 	 ➢ n is the sample size,

 	 ➢ ℎ is the number of lags being tested,

 	 ➢ ρ̂k​ is the sample autocorrelation at lag k.

This test statistic follows a χ2 distribution with ℎ degrees of freedom if 
the null hypothesis is true. The Ljung-Box test is applicable for checking 
the autocorrelation in the residuals of a fitted ARIMA model, for instance. 
It is suitable for continuous data and is commonly used in the field of 
finance, meteorology, and hydrology for time series analysis.
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But the Ljung-Box test may have low power when applied to data with 
non-normal distributions. The test is not suitable for very small sample 
sizes because it relies on asymptotic distribution, and it can be overly 
sensitive to departures from the null hypothesis when the sample size is 
large. The test may also not be appropriate for models that include lagged 
dependent variables or models with parameter estimates that are close to 
the non-stationary boundary.

In practice, it is important to interpret the results of the Ljung-Box 
test in conjunction with other tests and model diagnostics, and not to rely 
solely on this test when assessing the adequacy of a time series model.

4.2.4  Estimation with Autocorrelation

When dealing with autocorrelated data, there are several solutions that 
can be employed to address this issue. The choice of solution depends on 
the nature of the data, the underlying model, and the specific research or 
modeling objectives. Here are some common solutions for autocorrelated 
data:

Autoregressive Models (AR): If the autocorrelation pattern is 
systematic and can be modeled, autoregressive models (AR) can be 
used. In an AR model, the current value of the dependent variable 
is modeled as a function of its past values and an error term. This 
approach is applicable when the autocorrelation is a result of the time 
series structure itself. The models assumes that the time series is 
stationary, and the autocorrelation pattern can be adequately captured 
by the AR model. If the autocorrelation structure is mis-specified or 
if there are structural breaks or nonlinearities, the AR model may not 
be appropriate.

Moving Average Models (MA): Moving average models (MA) can 
be used when the autocorrelation is caused by random shocks or 
disturbances. In an MA model, the current value of the dependent 
variable is modeled as a function of past error terms. This approach 
is suitable when the autocorrelation is due to external factors or 
interventions. The effectiveness of the model lies on the assumption of 
the autocorrelation being caused by random shocks or disturbances, 
and the error process following a specific MA structure. The MA 
models may not be suitable if the autocorrelation is systematic or if 
the error process is more complex than the assumed MA structure.
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Autoregressive Integrated Moving Average (ARIMA): ARIMA 
models combine autoregressive and moving average components, 
making them suitable for handling both systematic and random 
autocorrelation patterns. These models are applicable when the time 
series is stationary or can be made stationary through differencing. 
The model assumes that the time series is stationary or can be made 
stationary through differencing, and the autocorrelation pattern can be 
captured by the ARIMA model. These models may not be appropriate 
if the time series exhibits nonlinearities, structural breaks, or if the 
autocorrelation structure is more complex than the assumed ARIMA 
model.

Generalized Autoregressive Conditional Heteroskedasticity 
(GARCH): GARCH models are used when the autocorrelation is 
present in the variance (heteroskedasticity) rather than the mean 
of the time series. These models are useful for modeling volatility 
in financial time series data and assume that the autocorrelation is 
present in the variance (heteroskedasticity) of the time series, and that 
the conditional variance follows a specific GARCH structure. GARCH 
models may not be suitable if the heteroskedasticity pattern is more 
complex than the assumed GARCH structure or if there are other 
forms of non-stationarity in the data.

Generalized Least Squares (GLS): If the autocorrelation pattern is 
known or can be estimated, the GLS method can be used to obtain 
efficient and unbiased estimates of the regression coefficients. This 
approach involves transforming the original model to account for 
the autocorrelation structure. The GLS approach is based on the 
assumption that the autocorrelation pattern is known or can be 
estimated accurately, and the error process follows a specific structure 
(e.g., AR or MA). But, if the autocorrelation structure is mis-specified 
or if the assumptions of the GLS method are violated, the resulting 
estimates may be biased or inefficient.

Cochrane-Orcutt Procedure: The Cochrane-Orcutt procedure is 
an iterative method for estimating regression coefficients in the 
presence of first-order autocorrelation. It involves transforming the 
original model and then applying ordinary least squares (OLS) to 
the transformed model. The model assumes that the autocorrelation 
follows a first-order autoregressive process, and the error process is 
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serially uncorrelated after the transformation. In this method the 
autocorrelation coefficient, ρ, is iteratively estimated at each stage of 
transformation till the estimated values converge. For example, as first 
step, the OLS procedure is run to compute the residuals and estimate 
the coefficient of autocorrelation as:

1
2

1

ˆ −

−

Σ
ρ =

Σ
t t

t

e e
e

This value is then used to transform the original regression model and 
its underlying data as:

[ ] ( ) [ ] *
1 0 1 11ˆ ˆ ˆ− −−ρ = β −ρ +β −ρ +òt t t t tY Y X X

and then the OLS procedure is applied to this transformed data to 
arrive at second stage error estimates. These values are then used to 
estimates the second stage coefficient of autocorrelation as:

	

 1
2

1

ˆ ˆˆ
ˆ

−

−

∑
ρ =

∑

 



t t

t

e e

e

The ρ̂̂ is used to transform the original data as:

 ( )  **
1 0 1 11ˆ ˆ ˆ− −

   −ρ = β −ρ +β −ρ +    òt t t t tY Y X X

OLS is run again to estimate third stage coefficient of autocorrelation as:

	

 1
2

1

ˆ ˆˆ
ˆ

−

−

Σ
ρ =

Σ

  



t t

t

e e

e

This procedure (iterations) is repeated till the estimates of the 

coefficient of autocorrelation at different stages (  ,ˆ ˆ ˆ, , ,ρ ρ ρ ρ … ) converge. 
The most efficient prediction of the outcome variable in the presence of 
autocorrelation can be done by:

( ) ( ) ( )
* * * * *

1 0 1 21 1 2 1 1
ˆ
+ + + += β +β +β +…+β +ρn k nn n k nY X X X e

where:

=ne  the error of the thn  observation in the final model,

� *ρ =  the estimate of the coefficient of autocorrelation obtained from 
the final iteration,

� *β =s  the estimates of the regression parameters using the transformed 
variables of the final model in the final iteration.
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The Cochrane-Orcutt procedure may not be appropriate if the 
autocorrelation structure is more complex than a first-order autoregressive 
process or if there are other violations of the assumptions (e.g., 
heteroskedasticity).

Newey-West Standard Errors: When the autocorrelation structure is 
unknown or difficult to model, the Newey-West standard errors can be used 
to obtain robust standard errors for the regression coefficients, accounting 
for potential autocorrelation and heteroskedasticity. It assumes that while 
the error process may exhibit autocorrelation and heteroskedasticity, 
but the underlying model is correctly specified. But, if the model is mis-
specified or if there are other violations of the assumptions (e.g., non-
stationarity), the Newey-West standard errors may not provide reliable 
inferences.

To make use of these solutions, it is important to first diagnose the 
presence and nature of autocorrelation using appropriate statistical tests 
(e.g., Durbin-Watson, Breusch-Godfrey, or Ljung-Box tests). Once the 
autocorrelation pattern is identified, the appropriate solution can be 
selected based on the characteristics of the data and the underlying model 
assumptions.

For example, if the autocorrelation is due to an omitted variable, the 
appropriate solution would be to incorporate the omitted variable in the 
model. The instance of a ‘quasi’-autocorrelation can be illustrated by an 
example: a person’s savings in the current period (t) does not only depend 
on their current income (Yt), but also on their income levels from previous 
periods. This can be represented in a simple savings function as:

( ) ( )1, −= t tS t f Y Y

0 1 2 1−= β +β +β +òt t t tS Y X

Where Yt–1 is the income from the previous period. If this lagged 
income term (Yt–1) is omitted from the savings function, its effect will get 
absorbed into the random error term (εt). Additionally, the coefficient 
estimate for current income (Yt) is likely to be biased due to this omission.  

Since income values are usually positively correlated over time, 
omitting the lagged income term will result in a pattern of autocorrelation 
in the error terms (ε’s) across different time periods. This autocorrelation 
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issue can be resolved by explicitly including the lagged income term as an 
explanatory variable in the savings function.

To detect if autocorrelation is caused by omitting relevant variables, 
one approach is to regress the residuals (e’s) from the initial model on 
variables that could potentially explain the phenomenon being studied 
based on theory or prior expectations. If such variables are significant in 
explaining the residuals, it suggests they should be included in the original 
model to address omitted variable bias and autocorrelation.

Thus, we must carefully examine the assumptions and limitations of 
each solution before applying it to a specific dataset or modeling problem. 
In some cases, a combination of different approaches or more advanced 
techniques (e.g., state-space models, non-parametric methods) may be 
required to effectively address autocorrelation, particularly when the 
underlying data generating process is complex or exhibits non-linear 
behavior.

4.2.5  The Assumption of Non-multicollinear Regressors

The assumption of non-multicollinear regressors, also known as the 
absence of perfect multicollinearity, is one of the fundamental assumptions 
in multiple linear regression analysis. This assumption is crucial for the 
proper estimation and interpretation of the regression coefficients.

Multicollinearity refers to the existence of a linear relationship or 
correlation among the independent variables (regressors) in a multiple 
regression model. When multicollinearity is present, it becomes difficult 
to disentangle the individual effects of each independent variable on the 
dependent variable, as the independent variables are highly correlated 
with one another.

The assumption of non-multicollinear regressors implies that the 
independent variables in the regression model should not be perfectly 
correlated with one another. In other words, there should not be an exact 
linear relationship among the independent variables. It is important to 
note that the assumption of non-multicollinear regressors does not require 
the complete absence of correlation among the independent variables. 
Some degree of correlation is acceptable and often expected in real-world 
data. However, the assumption is violated when there is a perfect or near-
perfect linear relationship among the independent variables.
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To detect multicollinearity, researchers often examine the correlation 
matrix of the independent variables, calculate variance inflation factors 
(VIFs), or employ other diagnostic measures. If multicollinearity is 
detected, several remedial measures can be taken, such as removing one 
or more highly correlated variables from the model, combining correlated 
variables into a single variable, or employing techniques like ridge 
regression or principal component regression.

By satisfying the assumption of non-multicollinear regressors, the 
regression model can provide reliable and interpretable estimates of the 
individual effects of each independent variable on the dependent variable, 
allowing for meaningful statistical inference and analysis.

4.2.5  Consequences of Multicollinearity

The presence of multicollinearity in a multiple regression model 
can have several consequences. Perfect correlation among the predictors  
( 1=

i jx xr ) can affect the reliability and interpretability of the regression 
model being investigated:

1.	 Infinitely large standard errors of estimates: Multicollinearity can 
lead to large standard errors for the regression coefficients, making 
it difficult to assess their statistical significance accurately. This is 
because multicollinearity leads to an increase in the variance of the 
estimated regression coefficients, making them less precise and less 
reliable. The variance of the ordinary least squares (OLS) estimator 
for the regression coefficient, β̂ j, is given by:

	

( )
( ) ( )

2

22
var

1
ˆ σβ =

 − Σ −  

j

j ij jR x x

	 where:

	 2σ  is the variance of the error term,

	 2
jR  is the coefficient of determination when jx  is regressed on the 

remaining independent variables,

	 ( )2
Σ −ij jx x  is the sum of squared deviations of jx  from its mean,

	 As 2
jR  approaches 1 (indicating a high degree of multicollinearity), 

the denominator decreases, leading to an increase in the variance of 
β̂ j. Since the standard error of β̂ j is given by:

	
( ) ( )ˆ ˆβ = βj jSE var
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	 multicollinearity increases the variance of β̂ j, leading to larger 
standard errors and wider confidence intervals for the regression 
coefficients. In the event of perfect multicollinearity, calculating 
the variance entails division by zero resulting in:

	
( )

2
ˆ

0
∞σ

β = =jvar

	 ( )β̂ ∞ ∞= =jSE

2.	 Indeterminate estimation of regression coefficients: Perfect 
multicollinearity renders the estimates of the regression coefficients 
indeterminate. Consider the regression equation:

	 0 1 1 2 2β β β= + + +òY X X

	 Where the independent variables are perfectly correlated as: 

2 1=X kX ; k being an arbitrary constant. Now, the equations that 
give the estimates of the regression parameters are:

	

( )( ) ( )( )
( )( ) ( )

2
1 2 2 1 2

1 22 2
1 2 1 2

Σ Σ − Σ Σ
=

Σ Σ − Σ

x y x x y x x
b

x x x x

	

( )( ) ( )( )
( )( ) ( )

2
2 1 1 1 2

2 22 2
1 2 1 2

Σ Σ − Σ Σ
=

Σ Σ − Σ

x y x x y x x
b

x x x x

	 Substituting 2 1=X kX , we get:

	

( )( ) ( )( )
( ) ( )

2 2 2 2
1 1 1 1

1 2 22 2 2 2
1 1

0
0

Σ Σ − Σ Σ
= =

Σ − Σ

k x y x k x y x
b

k x k x

	

( )( ) ( )( )
( ) ( )

2 2
1 1 1 1

2 2 22 2 2 2
1 1

0
0

Σ Σ − Σ Σ
= =

Σ − Σ

k x y x k x y x
b

k x k x

	 Thus, the parameters of the regression model cannot be estimated 
and their individual contributions to the dependent variable (Y ) 
become difficult to isolate and interpret accurately.

3.	 Misleading interpretation of regression coefficients: In the 
presence of multicollinearity, the regression coefficients can 
have counterintuitive signs or magnitudes, leading to misleading 
interpretations. This can happen when the independent variables 
are highly correlated and the researcher decides to avoid 
multicollinearity by omitting one of the variables. For example, let 
us assume that the true regression model is given by:
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	 1 1 2 2= + +òy b x b x

	 But the researcher removes x2 from the equation dues to its high 
correlation with x1, then the relationship he estimates becomes:

	 *
1 1 å= +y b x ε

	 He applies the OLS to this functional relationship to obtain the 
parameter estimate as:

	

* 1
1 2

1

Σ
=
Σ
yxb
x

	 Now, for the true regression relationship, the normal equations are:

	
2

1 1 1 2 1 2Σ = Σ + Σyx b x b x x

	
2

2 2 2 1 1 2Σ = Σ + Σyx b x b x x

	 We divide the first equation with 2
1Σx  to obtain:

	
1 1 2

1 22 2
1 1

Σ Σ
= +

Σ Σ
yx x xb b
x x

	 But from the earlier result, we have: *1
12

1

Σ
=

Σ
yx b
x

, therefore:

	

* 1 2
1 1 2 2

1

Σ
= +

Σ
x xb b b
x

	 Thus, by omitting variable x2, the researcher overestimates b1 and 
we define the specification bias as:

	
[ ] ( )*

1 1specification bias  = − E b b

	                         
1 2

2 2
1

Σ
=

Σ
x xb
x

	 Since the true regression model specifies a b2, the specification bias 
will be zero (eliminated) only when:

	
1 2

2
1

0Σ
=

Σ
x x
x

	 And this can happen only when x1 and x2 are perfectly non-
correlated (orthogonal). Thus, multicollinearity will in general lead 
to a specification bias in the parameter estimates.

	 It is important to note that while multicollinearity does not render 
the OLS estimator biased, that is ( ) = βi iE b  holds, it can lead to 
unreliable and unstable estimates of the regression coefficients, 
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making it difficult to draw meaningful inferences from the 
regression analysis.

4.2.7  Tests for Multicollinearity

There are several statistical tests and diagnostics used to detect 
multicollinearity in a multiple regression model:

Frisch’s Confluence Analysis

Also known as the Frisch Method or the Frisch Source Components 
Technique, is a method used to identify the sources of multicollinearity 
in a multiple regression model. It was developed by the economist Ragnar 
Frisch in the 1930s.

The basic idea behind Frisch’s Confluence Analysis is to decompose the 
regressors (independent variables) into two components: one component 
that is free from multicollinearity and another component that captures 
the multicollinearity among the regressors. This decomposition allows for 
the identification of the specific regressors or combinations of regressors 
that are responsible for the multicollinearity problem. The steps involved 
in Frisch’s Confluence Analysis are as follows:

1.	 Center the data: Subtract the mean from each regressor to obtain 
mean-centered regressors.

2.	 Calculate the correlation matrix (R) for the mean-centered 
regressors.

3.	 Find the eigenvalues (λi) and corresponding eigenvectors (ei) of the 
correlation matrix R.

4.	 Arrange the eigenvectors in descending order of their corresponding 
eigenvalues.

5.	 Construct the Frisch source components (Fi) by multiplying the 
mean-centered regressors with the eigenvectors: Fi = Xei, where X is 
the matrix of mean-centered regressors, and ei is the ith eigenvector.

6.	 Identify the source components (Fi) with small eigenvalues (λi) as 
the sources of multicollinearity.

7.	 Analyze the coefficients of the problematic source components to 
determine the regressors contributing to multicollinearity.

Let’s consider a multiple regression model with three regressors: X1, 
X2, and X1. We first center the data:
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1 1 1= −centeredX X X

2 2 2–=centeredX X X

3 3 3–=centeredX X X

We then calculate the correlation matrix (R). Suppose the matrix turns 
out to be:

1.0000 0.9500 0.9000
0.9500 1.0000 0.9500
0.9000 0.9500 1.0000

 
 =  
  

R

Next, we find the eigenvalues and eigenvectors of R: 1 2.8500λ = , 

2 0.1000λ = , and 3 0.0500λ = . Then the eigenvectors are:

[ ]1 0.5774 0.5774 0.5774=e

[ ]2e 0.7071 0.0000 0.7071= −

[ ]3e 0.4082 0.8165 0.4082= − −

Next, we arrange the eigenvectors in descending order of their 
corresponding eigenvalues and construct the Frisch source components 
as:

( ) ( ) ( )1 1 2 30.5774 0.5774 0.5774= + +centered centered centeredF X X X

( ) ( ) ( )centered centered centered
2 1 2 3F X 0.7071 X 0.0000 X 0.7071= − + +

( ) ( ) ( )centered centered centered
3 1 2 3F X 0.4082 X 0.8165 X 0.4082= − + + −

The source components F2 and F3 have small eigenvalues  
( 2 30.1000 and 0.0500λ λ= = ), indicating that they are the sources of 
multicollinearity. For F2, X1 and X3 have non-zero coefficients (–0.7071 
and 0.7071, respectively), suggesting that X1 and X3 are contributing to 
multicollinearity. For F3, X2 has a large coefficient (0.8165), indicating that 
X2 is also contributing to multicollinearity. Thus, based on the Frisch’s 
Confluence Analysis, we can conclude that the regressors X1, X2, and X3 all 
contribute to the multicollinearity problem in this regression model.

Frisch’s Confluence Analysis provides a systematic approach to 
identifying the sources of multicollinearity and can be particularly useful 
when dealing with a large number of regressors. However, it is important to 
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note that the interpretation of the results may not always be straightforward, 
especially when there are multiple sources of multicollinearity present.

The Farrar-Glauber Test

The Farrar-Glauber Test is a statistical test used to detect 
multicollinearity in a multiple regression model. It is based on the principle 
of testing the significance of the regression coefficients when individual 
regressors are removed from the model. The Farrar-Glauber Test involves 
the following steps:

1.	 Fit the full regression model with all the regressors included.

2.	 For each regressor, fit a reduced regression model by excluding that 
regressor from the full model.

3.	 Calculate the F-statistic for the test of the joint significance of the 
excluded regressor(s) in the reduced model.

4.	 Compare the calculated F-statistic with the critical F-value from 
the F-distribution table at the chosen significance level.

The null hypothesis for the Farrar-Glauber Test is that there is no 
multicollinearity among the regressors, while the alternative hypothesis is 
that multicollinearity exists. The test statistic for the Farrar-Glauber Test 
is calculated as follows:

	 –

−
=

×
reduced full

full

RSS RSS
F q RSS

n k

Where:

�RSSreduced is the residual sum of squares from the reduced model 
(without the regressor(s) being tested),

�RSSfull is the residual sum of squares from the full model (with all 
regressors),

q is the number of regressors excluded from the reduced model,

n is the number of observations, and

k is the number of regressors in the full model.

If the calculated F-statistic exceeds the critical F-value from the 
F-distribution table at the chosen significance level, the null hypothesis is 
rejected, indicating the presence of multicollinearity among the regressors.
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Consider a multiple regression model with three regressors: X1, X2, and 
X3, and a dependent variable Y. Suppose we have the following regression 
results (full model):

1 2 32.5 0.8 0.6 0.4= + + +Y X X X

	 ( )100 50 4 including the intercept= = =fullRSS n k

Reduced Model 1 (excluding X1):

2 31.8 0.7 0.5= + +Y X X

1
reducedRSS 120=

Reduced Model 2 (excluding X2):

1 32.2 0.9 0.3= + +Y X X

2
reducedRSS 110=

Reduced Model 3 (excluding X3):

1 22.1 0.9 0.7= + +Y X X

3
reducedRSS 105=

To perform the Farrar-Glauber Test for each regressor, we calculate 
the F-statistic and compare it with the critical F-value at the chosen 
significance level (e.g., α=5%):

( )
( )
( )

1

1 –

1
50 4

=
×

−

reduced full
X

full

RSS RSS
F

RSS

( )120 100
1 100

46

−
=

×

8.696=

DDE, P
on

dic
he

rry
 U

niv
ers

ity



Notes

179

( )
( )
( )

2

2 –

1
50 4

=
×

−

reduced full
X

full

RSS RSS
F

RSS

( )110 100
1 100

46

−
=

×

4.348=

( )
( )
( )

3

3 –

1
50 4

=
×

−

reduced full
X

full

RSS RSS
F

RSS

( )105 100
1 100

46

−
=

×

2.174=

The Fcritical value from the F-distribution table with 1 and 46 
degrees of freedom at the 5% significance level is approximately 4.05. 
Since the 

1
>X criticalF F , we reject the null hypothesis and conclude that 

multicollinearity exists among the regressors, potentially involving X1.

	 But, although 
2
>X criticalF F , the value close enough to the critical 

F-value, suggesting that multicollinearity may exist, but the evidence is 
weaker compared to X1. It is only with X3, since 

3
<X criticalF F , that we may 

not reject the null hypothesis and conclude that multicollinearity in the 
dataset does not involve X3.

The Farrar-Glauber Test provides a way to identify multicollinearity by 
examining the significance of the regression coefficients when individual 
regressors are removed from the model. However, it should be noted that 
the test may not always be conclusive, especially when multicollinearity is 
present among multiple regressors simultaneously. Additionally, the Farrar-
Glauber Test relies on the assumption of normality and homoscedasticity 
of the error terms, and violations of these assumptions may affect the 
validity of the test results.DDE, P

on
dic

he
rry

 U
niv

ers
ity



Notes

180

Variance Inflation Factor (VIF)

The Variance Inflation Factor (VIF) is a measure of how much the 
variance of an estimated regression coefficient increases if your predictors 
are correlated. If Xi is one of the predictors, the VIF for Xi is calculated as:

	
2

1
1

=
−i

i

VIF
R

where 2
iR  is the coefficient of determination of a regression of Xi on 

all the other predictors. A common rule of thumb is that if  1 0>VIF , then 
multicollinearity is high. Some researchers also use a more conservative 
threshold of 5.

The VIF method assumes a linear relationship between the predictor 
of interest and other predictors and can only assess multicollinearity on 
a variable-by-variable basis and may not detect multicollinearity arising 
from a combination of variables.

Tolerance

Tolerance is the inverse of VIF and is calculated as:

	
21τ = −i iR

Tolerance values lower than 0.1 (or some say 0.2) suggest 
multicollinearity may be influencing the regression estimates. Its 
assumptions are similar to that of the VIF—assumes linear relationships 
and considers variables individually.

Condition Index

The Condition Index is used to assess the severity of multicollinearity. 
It’s based on the singular value decomposition of the scaled, centered 
design matrix X. The condition number for each dimension is calculated 
as:

	

Largest EigenvalueCondition Index
Eigenvalue

=
i

A condition index greater than 30 is often taken as a sign of strong 
multicollinearity. But the condition index does not identify which variables 
are causing multicollinearity—high condition index might be caused by a 
single predictor or a combination of predictors.
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Eigenvalues of the Correlation Matrix

If the correlation matrix of the predictors is denoted by R, 
multicollinearity exists if one or more of the eigenvalues of R are close to 
zero. If any eigenvalue is close to 0, the corresponding condition index will 
be high, indicating multicollinearity. This method is limited by the fact 
that it relies on the correlation matrix, which considers linear associations, 
therefore, it cannot assess non-linear collinearity.

Correlation Matrix

The correlation matrix itself can be inspected to detect multicollinearity 
by looking at the pairwise correlation coefficients between independent 
variables. A high correlation coefficient (e.g., above 0.8 or below -0.8) 
between two or more predictors suggests multicollinearity. This method 
may is not helpful in detecting multicollinearity if it is caused by a 
combination of three or more variables.

In general, these tests are indicative rather than definitive. They 
can suggest the presence of multicollinearity but do not always identify 
its specific nature or the best course of action. The thresholds used for 
decision criteria are somewhat arbitrary and should be used as guidelines 
rather than hard rules. Also, these tests do not account for non-linear 
multicollinearity. Moreover, multicollinearity is not always a problem 
per se; it only becomes problematic when we need precise estimates of 
individual predictor effects or if we are trying to avoid overfitting in 
predictive models.

These tests can help diagnose the presence of multicollinearity, but 
the interpretation of the results should take into account the context of the 
study and the goals of the analysis. When multicollinearity is detected, it 
may be addressed through methods such as dropping variables, combining 
variables, or using ridge regression, which is a regularization technique 
that can handle multicollinearity.

4.2.8  Solutions for Multicollinear Data

Dealing with multicollinearity in a dataset involves either removing 
the multicollinearity or mitigating its impact on the model. Following are 
some common methods employed:DDE, P
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Increasing Sample Size: With a larger sample size, the estimates 
become more stable, and the impact of multicollinearity is lessened. 
But collecting more data can be expensive or time-consuming, and it 
might not always be feasible.

Removing correlated variables: If two variables are highly correlated, 
consider removing one of them from the model. This simplifies the 
model by eliminating variables that provide redundant information. 
This approach is simple but can be problematic as it can potentially 
lose important information that the removed variable(s) could have 
explained.

Linear combinations: Create a new variable that is a linear combination 
(e.g., sum or average) of the correlated variables. This can help reduce 
multicollinearity but may not be appropriate if the original variables 
have different interpretations or are measured on different scales.

Regularization techniques: Ridge Regression and Lasso are two 
techniques that can be used to address multicollinearity. Both methods 
add a penalty term to the loss function to shrink the coefficients and 
reduce the impact of multicollinearity.

Ridge Regression minimizes the following objective function:

( )( ) ( )2 2
0 * *β β β λ β∑ − −Σ + Σi ij j jmin y x

where λ is the ridge parameter, which controls the amount of shrinkage 
applied to the coefficients and β is the vector of regression coefficients. 
Larger values of λ lead to more shrinkage and, consequently, more bias 
but less variance in the estimates. It essentially adds a penalty equal to the 
square of the magnitude of coefficients to the loss function:

	 ( )22min | – |β +λ βY X

where λ is the regularization parameter that controls the strength of 
the penalty. Thus, ridge regression shrinks the coefficients of correlated 
predictors and reduces their variance. It does not eliminate multicollinearity 
but minimizes its effects. But the usefulness of this technique is limited by 
the fact that it introduces bias into the estimates to reduce variance and 
improve prediction accuracy, making the interpretation of coefficients 
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Lasso (Least Absolute Shrinkage and Selection Operator) Regression 
minimizes a similar objective function, but with the L1 penalty instead of 
the L2 penalty used in Ridge Regression:

( )( ) ( )2

0 * *β β β λ β∑ − −Σ + Σi i j jmin y x j

( )2
1min | |β λ β⇒ − +Y X

Lasso can shrink some coefficients exactly to zero, thereby performing 
variable selection and potentially removing multicollinear predictors. But, 
like ridge regression, it introduces bias and can be challenging to choose 
the optimal λ.

Elastic Net Regression combines penalties of ridge and LASSO:

( )2 2
1 2 1min | | | |− β +λ β +λ βY X

This technique balances between ridge and LASSO, shrinking 
coefficients and performing variable selection but requires tuning of two 
parameters, which can be computationally intensive.

Prior to applying methods like ridge, lasso, or elastic net, it is often 
recommended to standardize predictors to have mean 0 and variance 
1. This ensures that penalties are applied uniformly across predictors. 
These techniques can help stabilize the model estimates in the presence of 
multicollinearity, but they introduce bias into the estimates. Additionally, 
selecting the appropriate value for the tuning parameter (λ) can be 
challenging.

Principal Component Regression: Principal Component Analysis 
(PCA) is a technique that transforms the original variables into 
a new set of uncorrelated variables called principal components. 
These components are linear combinations of the original variables 
and account for most of the variance in the data. The steps followed 
are: First, conduct principal component analysis on the predictors 
to transform them into a set of linearly uncorrelated components. 
Then, use these components as predictors in a regression model. 
Mathematically, if X is the matrix of predictors, PCA transforms X into 
a new set of variables: Z = XW, where W is the matrix of eigenvectors of 
XʹX, and then regression is done on X instead of X. The first principal 
component is the linear combination of the original variables that 
maximizes the variance:
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	 ( ) ( )1 1 1*= ∑var Y eigenvectors eigenvalues

where eigenvectors1 are the eigenvectors corresponding to the largest 
eigenvalue. Thus, by using principal components (which are uncorrelated) 
as predictors, multicollinearity is eliminated. Although PCA can help 
reduce dimensionality and remove multicollinearity, but it can be 
challenging to interpret the principal components, and this method may 
not be appropriate when the goal is to understand the effects of the original 
variables on the response.

Partial Least Squares Regression (PLSR): PLSR is similar to PCR 
but constructs new predictor variables (latent variables) that account 
for both the variance in the predictor variables and the covariance 
between the predictor variables and the response variable. Let X be the 
matrix of predictor variables, and T be the matrix of latent variables. 
The PLSR model can be written as:

	 0 *β β ε= + +y T

where β is the vector of regression coefficients for the latent variables. 
PLSR can be computationally intensive, and the choice of the number of 
latent variables can be subjective.

Variable Selection Methods: These methods involve removing one or 
more highly correlated predictor variables from the regression model, 
thereby reducing multicollinearity.

Stepwise Regression: This method involves sequentially adding or 
removing predictor variables based on their statistical significance in 
the model. Variables with high multicollinearity are typically removed.

Best Subset Selection: This method involves evaluating all possible 
combinations of predictor variables and selecting the best subset based 
on a predetermined criterion, such as adjusted R-squared or Akaike 
Information Criterion (AIC).

VIF Stepwise Selection: This method involves iteratively removing 
the variable with the highest VIF until all remaining variables have a 
VIF below a predetermined threshold. This approach can be effective 
in reducing multicollinearity, but it might lead to the omission of 
important variables.

Variable selection methods can lead to biased coefficient estimates 
and may exclude important variables from the model.     
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After addressing multicollinearity, it is crucial to use appropriate 
model selection criteria (e.g., AIC, BIC, cross-validation) to evaluate the 
performance and predictive accuracy of the model, ensuring that the 
chosen method effectively balances bias and variance.

Multicollinearity poses challenges but can be managed through various 
statistical techniques, each with its rationale and limitations. While these 
methods can help mitigate the effects of multicollinearity, they may also 
introduce additional complexities or limitations. Researchers should 
carefully consider the trade-offs and assumptions associated with each 
method, as well as the specific characteristics of their dataset and research 
objectives, when deciding on the most appropriate approach. The choice 
of method depends on the specific context, including the severity of 
multicollinearity, the goal of the analysis (interpretation vs. prediction), 
and the characteristics of the data.

4.2.9  Summary

The classical linear regression model is based on a set of assumptions 
that ensure valid statistical inference. Among these, the non-stochastic 
assumptions deal specifically with the independent variables, also known 
as regressors, denoted by the matrix X. These assumptions are called 
“non-stochastic” because they relate to the fixed and predetermined 
independent variables, which are not subject to random variation. The 
main non-stochastic assumptions are:

1.	 Correct model specification: The model correctly specifies the 
functional form, includes all relevant variables, and excludes 
irrelevant ones. Incorrect specification, such as omitting a relevant 
variable or including an irrelevant one, can lead to biased and 
inconsistent parameter estimates.

2.	 Linear in parameters: The model is assumed to be linear in 
parameters, meaning the relationship between the independent 
variables and the dependent variable is linear.

3.	 Fixed and deterministic X: The values of the independent variables 
in the sample are fixed and known without error, implying no 
measurement error associated with the independent variables.

4.	 No endogeneity: There is no two-way causal relationship between 
the independent variables and the dependent variable. The 
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independent variables solely influence the dependent variable and 
are not influenced by the error term.

5.	 No multicollinearity: The independent variables in X are not 
perfectly linearly dependent on each other. Perfect collinearity 
would prevent the unique estimation of the coefficients.

6.	 Full-rank X: The number of observations is greater than the number 
of independent variables, and the rank of the X matrix equals the 
number of independent variables, ensuring no redundant rows or 
exact linear relationships within the independent variables.

Correct model specification is paramount, ensuring the model 
accurately represents the underlying relationship by including all relevant 
variables while excluding irrelevant ones, thereby preventing bias and 
inconsistency in parameter estimates. The assumption of linearity in 
parameters implies that the relationship between independent and 
dependent variables is linear, albeit allowing for transformations of 
variables to meet this criterion.

The fixed and deterministic X assumption treats the independent 
variables as constants, assuming no measurement error and eliminating the 
possibility of serial correlation by not including lagged dependent variables 
as regressors. No endogeneity assumes a one-way causal relationship 
from the independent variables to the dependent variable, without any 
feedback from the latter. This prevents the independent variables from 
being correlated with the error term, which could introduce bias and 
inconsistency in the regression coefficients.

No multicollinearity requires that the independent variables are not 
perfectly linearly dependent on each other, ensuring the model’s ability to 
uniquely estimate coefficients. The full-rank X assumption, necessitating 
more observations than variables and no redundant linear relationships 
among variables, supports the model’s estimability and interpretability.

Violations of these assumptions, such as autocorrelation and 
multicollinearity, can lead to biased, inefficient estimates and unreliable 
statistical inferences. The violation of the assumption of serial independence, 
also known as autocorrelation, occurs when the error terms in the model are 
correlated over time or across observations. Autocorrelation can arise due 
to various reasons, such as omitted variables, model misspecification, or 
the presence of dynamics or persistence in the dependent variable or error 
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terms. The consequences of autocorrelation include inefficient estimates, 
invalid statistical inferences, and, in some cases, biased estimates.

Several tests are available to detect autocorrelation, including the Von 
Neumann Ratio, Durbin-Watson test, Breusch-Godfrey test, and Ljung-
Box test. These tests are designed to identify patterns or dependencies in 
the error terms, indicating the presence of autocorrelation.

If autocorrelation is detected, various remedies can be employed, such as 
autoregressive models (AR), moving average models (MA), autoregressive 
integrated moving average (ARIMA) models, generalized autoregressive 
conditional heteroskedasticity (GARCH) models, generalized least squares 
(GLS), the Cochrane-Orcutt procedure, and the Newey-West standard 
errors.

The assumption of non-multicollinear regressors implies that the 
independent variables in the regression model should not be perfectly 
correlated with one another. Multicollinearity can lead to infinitely large 
standard errors of estimates, indeterminate estimation of regression 
coefficients, and misleading interpretation of regression coefficients.

Several tests and diagnostics are used to detect multicollinearity, 
including Frisch’s Confluence Analysis, the Farrar-Glauber test, Variance 
Inflation Factor (VIF), tolerance, condition index, eigenvalues of the 
correlation matrix, and the correlation matrix itself.

When multicollinearity is detected, various solutions can be employed, 
such as increasing the sample size, removing correlated variables, creating 
linear combinations of variables, using regularization techniques (ridge 
regression, LASSO, elastic net regression), principal component regression, 
partial least squares regression (PLSR), and variable selection methods 
(stepwise regression, best subset selection, VIF stepwise selection).

The choice of solution depends on the specific context, including 
the severity of multicollinearity, the goal of the analysis (interpretation 
vs. prediction), and the characteristics of the data. Each solution has 
its rationale, assumptions, and limitations, which should be carefully 
considered before implementation.DDE, P
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4.2.10  Keywords

Correct Model Specification: Accurately representing the relationship 
between dependent and independent variables by including all relevant 
variables and excluding irrelevant ones, to prevent biased estimates.

Linear in Parameters: The model assumes a linear relationship 
between the dependent variable and the parameters, albeit allowing 
transformations of the variables themselves.

Fixed and Deterministic X: Independent variables in the model are 
considered fixed and known with certainty, with no measurement 
errors, ensuring no serial correlation from using lagged dependent 
variables as regressors.

No Endogeneity: Independent variables should influence the 
dependent variable without being influenced by it in return, avoiding 
correlation with the error term that leads to biased estimates.

No Multicollinearity: Independent variables are not perfectly linearly 
dependent on each other, enabling the model to uniquely estimate 
coefficients.

Full-Rank X: More observations than variables, with no redundant or 
perfectly collinear variables, ensuring the estimability of the model.

Assumption of Serial Independence: Error terms in the regression 
model are not correlated with each other, ensuring no autocorrelation 
and maintaining efficiency in estimates.

Consequences of Autocorrelation: Autocorrelation leads to 
inefficient estimates and unreliable statistical inferences, potentially 
causing biased estimates in certain scenarios.

Tests for Autocorrelation: Diagnostic tests like Von Neumann Ratio, 
Durbin-Watson, Breusch-Godfrey, and Ljung-Box are used to detect 
autocorrelation.

Estimation with Autocorrelation: Solutions to autocorrelation 
include autoregressive models, moving average models, ARIMA, 
GARCH, generalized least squares, Cochrane-Orcutt procedure, and 
Newey-West standard errors.

Consequences of Multicollinearity: Problems caused by 
multicollinearity, such as indeterminate and inflated estimates of 
regression coefficients.
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Tests for Multicollinearity: Methods like Frisch’s Confluence Analysis, 
Farrar-Glauber Test, Variance Inflation Factor (VIF), Condition 
Index, eigenvalues of the correlation matrix, and correlation matrix 
inspection are utilized to detect multicollinearity.

Solutions for Multicollinear Data: Increasing sample size, removing 
correlated variables, combining variables, regularization techniques 
(ridge regression and lasso), Principal Component Regression, and 
Partial Least Squares Regression as remedies.

Von Neumann Ratio Test: Detects first-order autocorrelation by 
comparing the mean square successive difference to the variance of 
time series.

Durbin-Watson Test: Widely used test for detecting first-order 
autocorrelation in regression models, with simple interpretation and 
critical values.

Breusch-Godfrey Test: Extends the Durbin-Watson test to detect 
higher-order autocorrelation, relying on an auxiliary regression of 
residuals on original regressors and their lagged values.

Ljung-Box Test: Investigates the presence of autocorrelation in time 
series or residuals by testing the randomness of a sequence, suitable 
for continuous data.

Frisch’s Confluence Analysis: Identifies sources of multicollinearity 
by decomposing regressors into components free from and containing 
multicollinearity.

Farrar-Glauber Test: Tests the significance of regression coefficients 
when individual regressors are removed, indicating multicollinearity 
if coefficients significantly change.

Variance Inflation Factor (VIF) and Tolerance: Quantify how 
much the variance of an estimated regression coefficient is increased 
due to multicollinearity, with higher VIF values indicating greater 
multicollinearity.

Regularization Techniques: Techniques like ridge regression, lasso, 
and elastic net are used to address multicollinearity by adding a 
penalty to the loss function, reducing the impact of highly correlated 
predictors.

Partial Least Squares Regression (PLSR): Constructs new predictor 
variables that account for the variance in predictors and the covariance 
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between predictors and the response variable, offering an alternative 
when multicollinearity is present.

Principal Component Regression (PCR): Utilizes principal 
component analysis to transform correlated variables into a set of 
uncorrelated principal components used as predictors in the regression 
model, effectively addressing multicollinearity.

Condition Index: A diagnostic measure used to assess the severity 
of multicollinearity based on the singular value decomposition of the 
design matrix, with higher values indicating stronger multicollinearity.

Eigenvalues of the Correlation Matrix: Inspection of eigenvalues 
from the correlation matrix of predictors, where smaller eigenvalues 
suggest the presence of multicollinearity among the variables.

Correlation Matrix Inspection: A simple method to detect 
multicollinearity by examining the pairwise correlation coefficients 
among independent variables, looking for high correlation coefficients 
as indicators of multicollinearity.

Regularization Parameter (λ): In regularization techniques like ridge 
and lasso regression, λ controls the amount of shrinkage applied to the 
coefficients, balancing the bias-variance trade-off.

Ridge Regression: A regularization technique that addresses 
multicollinearity by adding a penalty equal to the square of the 
magnitude of coefficients, which helps in reducing the variance of 
coefficient estimates.

Lasso Regression: A regularization technique that, unlike ridge 
regression, can shrink some coefficients to zero, thus performing 
variable selection in addition to addressing multicollinearity.

Elastic Net Regression: Combines the penalties of both ridge and 
lasso regression, making it suitable for situations where there is 
multicollinearity among predictors, as well as when there is a need for 
variable selection.

Stepwise Regression and Best Subset Selection: Variable selection 
methods that involve either sequentially adding or removing variables 
based on their statistical significance, or evaluating all possible 
combinations of variables, respectively, to address issues including 
multicollinearity.
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4.2.11  Self-assessment Questions

1.	 What is the significance of the assumption of fixed and deterministic 
X in classical linear regression models?

2.	 Explain how multicollinearity affects the precision and interpretation 
of regression coefficients.

3.	 Describe the consequences of autocorrelation in the error terms of 
a linear regression model.

4.	 What does the assumption of no endogeneity imply about the 
relationship between independent variables and the error term?

5.	 How does correct model specification ensure unbiased and 
consistent parameter estimates in linear regression?

6.	 Discuss the implications of violating the linear in parameters 
assumption for a regression model.

7.	 Why is the full-rank X assumption crucial for the estimability of 
regression coefficients?

8.	 How can the presence of multicollinearity be detected in a regression 
model?

9.	 What remedies are available for dealing with autocorrelation in 
time-series data analysis?

10.	 Explain the importance of the assumption of serial independence 
in the context of regression errors.

11.	 Given the following data on Y (dependent variable) and X 
(independent variable), calculate the simple linear regression 
coefficients ( 0β  and 1β ) using the OLS method.

Y X

2 1

3 2

5 3

7 4

9 5

12.	 Using the residuals from Question 11, test for autocorrelation using 
the Durbin-Watson statistic.

DDE, P
on

dic
he

rry
 U

niv
ers

ity



Notes

192

13.	 Consider a dataset with two independent variables (X1 and X2) 
showing signs of multicollinearity. Calculate the Variance Inflation 
Factor (VIF) for X1.

X1 X2 Y

1 2 5

2 4 10

3 6 15

4 8 20

14.	 Given the following error terms from a regression model, calculate 
the first-order autocorrelation coefficient (ρ) using the formula.

t et

1 0

2 1

3 0.5

4 –0.5

5 –1

15.	 For the dataset given in Question 13, calculate the coefficients 
using Ridge Regression with λ=0.5. Assume the intercept is zero for 
simplification.

16.	 Using the dataset from Question 11, compute the adjusted R-squared 
value for the simple linear regression model.

17.	 Given the following data, perform a Breusch-Godfrey Test for up to 
2nd order autocorrelation. Use a significance level of 5%.

t Residual (et)

1 –0.2

2 0.1

3 –0.1

4 0.2

5 –0.1
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18.	 For the dataset in Question 13, calculate the Elastic Net Regression 
coefficients with λ1=0.1 and λ2=0.1, assuming the intercept is zero 
for simplification.

19.	 Using the given hypothetical data for a time series, calculate the 
Ljung-Box Q statistic for up to 3 lags. Assess the presence of 
autocorrelation.

t et

1 0.3

2 0.1

3 –0.2

4 0.4

5 –0.3

20.	 Given the following data on three independent variables (X1, X2, X3) 
and Y, perform a principal component analysis and calculate the 
first principal component scores. Use the scores as predictors in a 
simple linear regression model to estimate Y.

X1 X2 X3 Y

10 20 5 30

20 40 10 60

30 60 15 90

40 80 20 120

4.2.12  References
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understanding and applying econometric concepts rather than on 
mathematical derivations.
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on the practical implementation of econometric methods, making 
it an excellent resource for understanding the basics of regression 
analysis and its assumptions.
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UNIT – V : Regression on Dummy Independent Variables

Lesson 5.1 – The Nature of Dummy Variables

Structure

5.1.1	 Introduction

5.1.2	 Dummy Variables and Intercept Parameters

5.1.3	 Dummy Variables and Slope Parameters

5.1.4	 The Intercept Dummy and the Interaction Variable

5.1.5	 Dummy Variable for the Dependent Variable

5.1.6	 Using Dummy Variables in case of more than Two Classes

5.1.7	 The Dummy Variable Trap

5.1.8	 Using Dummy Variables with Two Qualitative Variables

5.1.9	� Using Dummy Variables with Continuous Quantitative 
Variables

5.1.10	 Dummy Variables and the Chow Test

5.1.11	 Summary

5.1.12	 Keywords

5.1.13	 Self-assessment Questions

5.1.14	 References

5.1.1  Introduction

Econometric models often rely on numerical data, but many interesting 
economic questions involve categories (e.g., gender, race, industry type). 
Categorical data represents qualities or classifications that do not have 
a natural numerical scale. For instance, we cannot meaningfully add or 
subtract values like “high school diploma” or “unemployed.” Categorical 
variables, such as gender, race, educational level, or geographical regions, 
cannot be directly included in a linear regression model because they lack 
a natural numerical scale. Dummy variables provide a way to encode these 
categorical variables into a format that can be used in regression analyses. 
By including dummy variables in a regression model, researchers can 
quantify the impact of these categorical factors on the outcome variable 
of interest.
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Dummy variables act as a bridge between categorical data and 
regression models. They convert categories into simple 0s and 1s, allowing 
researchers to analyze how these categories influence a continuous 
outcome. In essence, these variables (also called binary, indicator, or 
categorical variables) translate qualitative information into a format usable 
by regression analysis. This lets researchers incorporate non-numerical 
factors and assess their impact on the variable being predicted.

Coefficients of dummy variables are straightforward to interpret, 
representing the average difference in the dependent variable for the 
category relative to the reference category. By including dummy variables 
for potential confounders, researchers can more accurately estimate the 
effect of the variables of interest.

A dummy variable takes the value of 1 or 0 to indicate the presence 
or absence of some categorical effect that may be expected to shift the 
outcome. For example, suppose we are studying the effect of education 
level on income. We have a category for “high school diploma.” To include 
this in a regression, we create a dummy variable. This variable will take 
a value of 1 if someone has a high school diploma and 0 otherwise. The 
coefficient of this dummy variable in the regression analysis will tell us 
how much, on average, having a high school diploma (compared to the 
reference category, typically those without a diploma) affects income. 
Consider another example: in studying wage determinants, a dummy 
variable for gender might be created where 1 represents female and 0 
represents male. This allows the model to account for wage differences 
that are attributable to gender.

In econometric time series analysis, dummy variables may be used 
to indicate the occurrence of wars, major strikes, or other significant 
events). In panel data analyses, dummy variables are used to control 
for unobserved heterogeneity across entities (e.g., individuals, firms, 
countries) by including a dummy for each entity. This fixed effects 
approach helps isolate the effect of variables of interest from the influence 
of time-invariant characteristics.

Dummy variables can be used to test for interaction effects between 
categorical and continuous variables. For example, by creating an 
interaction term between a dummy variable (e.g., receiving training) and a 
continuous variable (e.g., hours of training), analysts can examine whether 
the impact of training on productivity varies with the amount of training.
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Dummy variables are essential for modeling seasonal patterns or 
trends over time. Dummy variables can be added to represent each of 
the possibly many seasonal periods contained in data, such as hourly 
or weekly variations in traffic flow. For instance, monthly data analyses 
might include 11 dummy variables to capture monthly effects (with one 
month omitted as a reference), allowing the model to adjust for seasonal 
variations in the data.

Dummy variables can help control for confounding factors and 
improve the validity of results). For instance, when building a model to 
explain income in a cross-section of the population, a dummy variable for 
gender could be included to test the hypothesis that men have a higher 
starting salary and faster trajectory than women.

Dummy variables can also be used to represent subgroups of the 
sample in a study—often to distinguish different treatment groups. In the 
simplest case, a person is given a value of 0 if they are in the control group 
or a 1 if they are in the treated group. Dummy variables enable the use of 
a single regression equation to represent multiple groups, eliminating the 
need to write out separate equation models for each subgroup. Dummy 
variables can account for group-specific effects that might otherwise cloud 
your results. In a treatment effects model, a dummy variable can represent 
the effect of both time (before and after treatment) and group membership 
(treatment or control group).

Thus, dummy variables are a powerful tool in econometric analyses 
for representing categorical data, indicating key events, controlling 
for confounding factors, modeling seasonal and treatment effects, and 
more. They allow for more nuanced models that capture the influence of 
categorical variables. However, they should be used judiciously to ensure 
valid and generalizable models.

5.1.2  Dummy Variables and Intercept Parameters

Consider the data of Gross Domestic Consumption and National 
Income of India for the period 1981-81 to 2022-23 given in Table–1. 
This period saw three major crises: the economic crisis of 1990-1991, the 
worldwide recession 2008-09, and the COVID–19 lockdowns 2020-21. 
Apart from these, the Indian economy also suffered from the shock of 
demonetization towards the end of 2016 and the introduction of Goods 
and Services Tax (GST) a year later. While GST implementation impacted 
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the small and medium enterprises (MSMEs) mainly, the others–economic 
crises and demonetization–hurt the consumers equally or even more than 
they did the producers.

Now, if we were to model the relationship between national income and 
gross domestic consumption for the period 1981-82 to 2022-23, we must 
take into account these periods of crises where the relationship between 
income and consumption was severely impacted upon by external forces. 
Not accounting for these periods will lead to unreliable estimates. In the 
absence of any major episodes, the relationship between gross domestic 
consumption and national income could be represented by a simple linear 
regression model, such as:

		   		  0 1= β +β +t t tC Y ò  � (5.1)

where national income=tY  and gross domestic consumption=tC

But this equation does not take into account the impact of the crises 
on the domestic consumption. The economic crises are expected to shift 
this consumption function downwards during the crisis periods. How do 
we account for that?

Dummy variables are a way to incorporate the effect of these economic 
episodes into the relationship between gross domestic consumption and 
national income. Essentially, we create a dummy variable, let’s say D, 
and assign it a value of 1 if the gross domestic consumption and national 
income data refer to an year of economic crisis and a value of 0 if the data 
corresponds to an episode-free year. Thus, the dummy variable acts like a 
switch which is turned ‘on’ (value = 1) during crisis years and turned ‘off ’ 
(value = 0) during non-crisis years. Thus:

1crisis years
0normal years


= 


D

Having created a dummy variable to represent the crisis years, we 
must now decide how did the crises impact the domestic consumption. 
This is the most crucial step with only theory to guide. If we theorize that 
the economic crises impacted the level of autonomous consumption in the 
economy, then we essentially mean that the intercept, β0, in equation 5.1 
does not remain constant for all values in the sample years. We model this 
mathematically by modifying equation 5.1 as:

				    0 1= β +β +t t t tC Y ò  	�  (5.2)
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Notice that the intercept parameter now has a time subscript attached 
to it indicating the fact that it is no longer a constant rather it changes from 
one observation to another.  Thus, we model the intercept incorporating 
the dummy variable as:

				    0 0 δβ = β +t tD  	�  (5.3)

Since we have theorized that the effect of crises is on the level of 
autonomous consumption, the coefficient of the dummy variable in 
equation 5.3, represents the reduction in gross domestic consumption 
during the economic episode years and is expected to have a negative sign. 
We incorporate this assumption about the dummy variable to expand our 
linear relationship model as:

		  0 1 1981, , 2023δ= β + +β + = …t t t tC D Y tò  	�  (5.4)

Table 1: Domestic Consumption and National Income of India (Source: 
Handbook of Indian Economy, RBI)

Year National 
Income

(Rs. 
Billion)

Gross  
Domestic 

Consumption
(Rs. Billion)

Year National 
Income

(Rs. 
Billion)

Gross  
Domestic 

Consumption
(Rs. Billion)

1981-82 1331.95 684.58 2002-03 15465.04 7671.3

1982-83 1498.13 728.83 2003-04 17462.7 8722.13

1983-84 1766.84 872.22 2004-05 19802.26 9994.76

1984-85 1942.88 962.11 2005-06 22649.38 11487.77

1985-86 2187.35 1092.36 2006-07 26242.95 13464.75

1986-87 2507.21 1228.24 2007-08 31127.15 15977.93

1987-88 2891.02 1392.25 2008-09 36907.09 19182.54

1988-89 3507.91 1703.02 2009-10 44706.5 23284.63

1989-90 4090.26 1970.18 2010-11 53031.49 27693.06

1990-91 4598.74 2199.5 2011-12 61759.31 32440.52

1991-92 5020.13 2406.13 2012-13 67599.35 35756.22

1992-93 5448.59 2651.3 2013-14 73782.13 38845.69DDE, P
on

dic
he

rry
 U

niv
ers

ity



Notes

200

Year National 
Income

(Rs. 
Billion)

Gross  
Domestic 

Consumption
(Rs. Billion)

Year National 
Income

(Rs. 
Billion)

Gross  
Domestic 

Consumption
(Rs. Billion)

1993-94 6144.45 2938.54 2014-15 80709.89 42607.96

1994-95 6954.98 3369.62 2015-16 88171.14 46639.62

1995-96 8071.98 3919.47 2016-17 96412.28 51089.12

1996-97 9134.43 4436.55 2017-18 104756.92 55858.28

1997-98 10142.92 4860.6 2018-19 114435.85 60850.47

1998-99 11350.89 5510.28 2019-20 119363.78 63425.47

1999-00 12413.05 6158 2020-21 118318.33 62517.59

2000-01 13277.45 6623.97 2021-22 130225.85 69231.3

2001-02 14315.04 7123.41 2022-23 142424.47 75776.3

The econometric model we have hypothesized changes as the value of 
the dummy variable changes during the crisis and non-crisis periods:

( )
0 1

0 1

when 0
when 1

β +β =
=  β + δ +β =

t t
t

t t

Y D
C

Y D

Thus, during the crisis years, the intercept parameter, β0, is reduced 
by the amount δ as it is expected to carry a negative sign. This can be 
presented graphically as in Figure–1 below:
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The dummy variable, Dt, is called the intercept dummy variable as 
it captures a shift in the intercept of a linear relationship modeled by a 
regression equation. The dummy variable, in this case, has the effect of 
pulling the consumption line downwards as it is expected to have a negative 
value.

If the error terms, tò , in equation 5.4 follow the assumptions of the 
classical linear regression model, all the parameters, including that of 
the dummy variable, can be estimated using the ordinary least squares 
(or any other, such as the maximum likelihood) estimation procedure. 
The dummy variable is treated as any other explanatory variable in the 
equation and the estimation is not affected by the fact that it consists of 
only zeros and ones.

The estimated value of the parameter δ can be checked for statistical 
significance using the normally employed test of hypothesis; if the null 
hypothesis of δ = 0 is not rejected, then we can conclude that the economic 
crises had no effect on the level of autonomous consumption.

For the data in Table–1, the economic crisis years are judged to be 
1990-91 to 1992-93, 2008-09 to 2010-11, 2016-17 to 2017-18, and 2020-21 
to 2021-22; the dummy variable is assigned a value of 1 for these years, 0 
for the rest of the years. Running the  ordinary least squares procedure 
result in the following estimates:

			   7ˆ 344.72 13 .58 0.53= − +t t tC D Y  	�  (5.5)
The standard errors of these parameter estimates are as follows:

 SEb0
 = 0.001

  SEδ = 7.596

SEb1
 = 41.073

The adjusted coefficient of determination turns out to be: R2 = 0.999 
indicating a very high explanatory power of the hypothesized regression 
model. The omnibus test of significance of all the parameter estimates 
together being non-zero yields: F = 28.90, significant at α = 0.01.

As expected, the ordinary least squares estimate of the dummy variable 
parameter, δ, is negative. Thus, on an average, the level of autonomous 
domestic consumption decreased by 137.58 billion rupees during the crisis 
years. This drop in the level of domestic consumption is the manifestation 
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of structural changes in the economy during the crisis years. The regression 
equation also shows that the marginal propensity to consume, estimated 
by b1, is very low at just 53% of the marginal income.

5.1.3  Dummy Variables and Slope Parameters

The effect of a qualitative variable has to be guided by the theory. 
Suppose we have an a priori reason to argue that the level of autonomous 
consumption was not affected by the economic shocks, rather the 
marginal propensity to consume–represented by the coefficient of the 
income variable–was affected. To model this relationship we modify 
equation 5.1 as:

				    0 1= β +β +t t t tC Y ò  	�  (5.6)

Where the addition of the subscript t to the slope parameter indicates 
that it is no longer the same for all years and changes from one period to 
another. As earlier, a dummy variable is created to incorporate the fact that 
the slope parameter changes with cases. The slope parameter can now be 
modeled as:

				    1 1 γβ = β +t tD  	� (5.7)

We assume, for simplicity of exposition, that the intercept parameter 
is constant. The coefficient γ  of the dummy variable tD , represents the 
change in the marginal propensity to consume during the crisis and non-
crisis years in the sample.

	 Incorporating the effect of economic crises in the regression model 
implies substituting equation 5.7 into equation 5.6 to obtain:

			   ( )0 1= β + β + γ +t t t tC D Y ò  	�  (5.8)

Or, equivalently as:

		  0 1      1981, , 2023γ= β +β + + = …t t t t tC Y D Y tò � (5.9)

This representation essentially means that modeling the assumption 
of time varying marginal propensity to consume adds a composite variable 
to the regression relationship: t tD Y , the product of the dummy variable 
and national income. This composite is called an interaction variable and 
it captures the interaction effect of economic crises and national income 
of domestic consumption. This interaction variable is absent during the 
normal years as the dummy variable takes the value of zero and equals the 
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national income during the crisis years when the dummy variable takes 
the value of one. Thus, the interaction variable changes the consumption 
function during the periods of economic crises:

( )
0 1

0 1

when 0
when 1

β +β =
= β + β + γ =

t t
t

t t

Y D
C

Y D

Thus, during normal years, the marginal propensity to consume is 1β  
and this changes during episodes of economic crises to ( )1β + γ ; as earlier, 
we expect γ  to be negative. Provided that the error terms in equation 5.9 
follow the assumptions of the classical linear model, the parameters of 
the equation, ( )0 1, ,β β γ , can be estimated using the ordinary least squares 
procedure. The hypothesis that the episodes of economic distress had no 
effect on the marginal propensity to consume can be tested the usual way 
for the null hypothesis: 0 : 0γ =H

5.1.4  The Intercept Dummy and the Interaction Variable

If we relax the somewhat artificial assumption of constant intercept 
and accept the more likely scenario that the economic shocks affected 
both the level of autonomous consumption and the marginal propensity 
to consume, then we need to incorporate both the shift in the intercept 
and time varying slope into the econometric mode. This can be achieved 
by putting together equations 5.4 and 5.9 to get:

	   ( )0 1 1981, , 2023δ γ= β + +β + + ε = …t t t t t tC D Y D Y t  � (5.10)

Where, as before, δ  is the parameter of the shift in the intercept and 
γ  is the parameter of the interaction variable. Notice that, there is only 
one dummy variable, tD , representing the presence or absence of the 
economic shocks. Provided that the error terms of equation 5.10 follow 
the assumptions of the classical linear regression model, the parameters of 
the equation can be estimated, as before, using the ordinary least squares 
procedure and tested for statistical significance.

5.1.5  Dummy Variable for the Dependent Variable

So far, we have considered cases where the outcome variable was 
continuous and only the explanatory variables were categorical. But there 
may be cases where the outcome variable itself is categorical. Consider, for 
example, the very practical problem of predicting someone as potential 
buyer of a luxury smartphone. Suppose that the ownership of a luxury 
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smartphone of a certain brand is found to be heavily influenced by the 
income earned by the individual and the profession to which the individual 
belongs. This relationship is then modeled as:

			   0 1 2= β +β +β +i i i iC Y W ò  	�  (5.11)

Where:

Ci = individual owns a luxury smartphone 

Yi = income of the individual 

Wi = profession of the individual

Here the ownership of the luxury smartphone is clearly a dichotomous 
variable—an individual owns it or does not own it. It can be represented 
as a dummy variable that takes the value 1 if the individual owns a luxury 
smartphone and the value 0 if the he does not own a luxury smartphone. 
That is:

0if does not own a luxury smartphone
1if does own a luxury smartphone


= 


iC

In case of dichotomous outcome variables, the error terms are not 
homoscedastic. And, thus the ordinary least squares procedure is not 
appropriate to estimate the model parameters. Such cases are estimated 
with a modified set of variables and the estimation techniques fall under 
the category of binary logistic regression models, namely the logit and 
the probit models. Discussion of these models is beyond the scope of this 
book; they can be learned in advanced courses of econometrics.

5.1.6  Using Dummy Variables in Case of More than Two Classes

The dummy variables that we have studied so far have only two states: 
a value of 0 or 1. But in the example considered in the last section, the 
explanatory variable ‘profession’ can, rather will, have more than two values, 
e.g., investment banker, industrialist, doctor, academician, politician, etc. 
Creating a dummy variable for ‘profession’ needs some consideration.

Consider the case where we want to model the consumption of caviar 
by customers who buy it from a upmarket superstore so that we are able to 
predict the amount of caviar that will be bought by a particular customer 
who walks into the superstore. In a cross-sectional study of this kind the 
prices of the goods concerned and of all its substitutes and compliments 
are a given and therefore are not included in the econometric model.
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Suppose that a previous focus group study that found that the factors 
that affect the caviar consumption are mainly: income, age, gender, and 
profession. While the age and income of the individual are continuous 
variables, gender and profession are not. Simple categorical variables like 
gender take on only two values and it is easy to create dummy variables for 
them. For example, the gender can be incorporated as a dummy variable 
with two values:

0if male
 

1if female


= 


G

But for profession, which has more than two states, dummy variables 
need to be defined for each of the possible states. Suppose that the 
profession has only four values: banker, politician, industrialist, and real 
estate, then we may create the following dummy variables:

0 if the customer is not a banker
1 if the customer is a banker

0 if the customer is not a politician
1 if the customer is a politician

0 if the customer is not an in
1


= 



= 



= 


Bank

Politician

Industrialist

W

W

W
dustrialist

if the customer is an industrialist

Notice that, for four states of the variable profession, we have created 
only three dummy variables—one less than the number of states. The 
omitted state, it can be any state decided arbitrarily, is taken as the base 
case or the reference level.

5.1.7  The Dummy Variable Trap

The reason for creating one less dummy variable is that if we 
create for all states that a particular variables takes, then we will have 
a case of exact multicollinearity. If we create dummy variables for all 
the states, they will add up to one making them linearly dependent 
on the intercept variable. That is, the design matrix of X will have 
an extra variable apart from the intercept that will have all its values 
as 1, thus rendering two columns of the design matrix having the 
exact same values and violating the full rank order condition for 
the estimation of the parameters. This tendency to create dummy 
variables for all states of a categorical variable is called falling into 
a ‘dummy variable trap’—an eminently avoidable trap.
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Let us consider one of the most common use of dummy variables—
removing seasonality in a timeseries data. Many timeseries data exhibit 
seasonal variations due to various factors–for example, air conditioner 
sales are particularly high during the summers, raincoats during the 
rainy season, etc. Similarly, sales of consumer electronics and clothing is 
higher during the Durga Puja and Deepavali festivals. These variations 
in the data are called seasonality. They can be easily modeled using 
dummy variables.

Suppose we want to model retail sales of air conditioners in Northern 
India. They exhibit high volumes during the months of April-May-June 
and large drops during the month of October-November-December. 
We can create a dummy variable representing the quarters of a year and 
incorporate them into the regression model as follows:

	 0 1 1 2 2 1 2 3δ γ η= β +β +β +…+β + + + +t t t k kt t t t tS X X X Q Q Q ò �    (5.12)

Where:

1 2

1 2 3

quarterly sales
, , , explanatory factors

, , quarterly dummy variables

=
… =

=

t

t t kt

t t t

S
X X X

Q Q Q

These dummy variables take the values 0 and 1 as follows:

1

2

3

1 in the first quarter
0 in all other quarters

1 in the second quarter
0 in all other quarters

1 in the third quarter
0 in all other quarters


= 



= 



= 


t

t

t

Q

Q

Q

We created only 3 dummy variables for 4 quarters. The ordinary least 

squares estimates of , , andδ γ η  will give the seasonal effect of the first, 
second, and third quarters. In the fourth quarter of the year all other 
dummy variables ( )1 2 3, ,t t tQ Q Q  are zero; the seasonal effect of this quarter 
is estimated by the intercept parameter, 0β .DDE, P
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5.1.8  Using Dummy Variables with Two Qualitative Variables

Lets go back to the caviar consumption example in Section 5.1.6. The 
basic econometric model that relates caviar consumption to the level of 
income would be:

			   0 1 1, 2, ,= β +β = …i iC Y i N 		�     (5.13)

To keep the exposition simple, let us assume that the only qualitative 
variables that affect the consumption of caviar by an individual are gender 
and the type of profession the person is engaged in; also, assume that these 
qualitative factors only affect the level of autonomous consumption of 
caviar. Since the autonomous consumption is measured by the intercept, we 
can incorporate the qualitative characteristics of the individual consumer 
by modifying the base econometric model as:

			   0 1 1, 2, ,= β +β = …i i iC Y i N  	� (5.14)

	 The addition of the subscript ‘ i ’ to the intercept parameter denotes 
that it is no longer constant but varies from individual to individual. The 
effect of the qualitative variables on the intercept can be incorporated as:

		   0 0 1 1 2 2 3 3δβ = β + + γ + γ + γi i i i iG W W W  � (5.15)

Where:

1

2

3

0 if male
1 if female

0 if the customer is not a banker
1 if the customer is a banker

0 if the customer is not a politician
1 if the customer is a politician

0 if the customer is not an
1


= 



= 



= 



= 


i

i

i

i

G

W

W

W
 industrialist

if the customer is an industrialist

And 1 2 3, , ,δ γ γ γ  are the coefficients of the dummy variables of gender 
and profession expressing the effect of these qualitative variables on the 
consumption of caviar. Incorporating equation 5.15 in equation 5.14 will 
give the model to be estimated:

	 0 1 1 2 2 3 3 1 1, 2, ,δ= β + + γ + γ + γ +β = …i i i i i iC G W W W Y i N � (5.16)DDE, P
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In the above equation the reference or the base case is male real estate 
agent. The complete enumeration of the effects of different combinations 
of qualitative variables is as follows:

0 1

0 1 1

0 2 1

0 3 1

0 1

0 1 1

male real estate agent (5.17 )
male banker (5.17 )
male politician (5.17 )
male industrialist (5.17 )
female real estate agent (5.17 )δ

δ

= β +β
= β + γ +β
= β + γ +β
= β + γ +β
= β + +β
= β + + γ +β

i i

i i

i i

i i

i i

i

C Y a
C Y b
C Y c
C Y d
C Y e
C Y

0 2 1

0 3 1

female banker (5.17 )
female politician (5.17 )
female industrialist (5.17 )

δ
δ

= β + + γ +β
= β + + γ +β

i

i i

i i

f
C Y g
C Y h

These equations can be used to answer questions such as: Do men and 
women differ significantly in their caviar consumption habits? Does the 
profession to which one belongs has any significant effect on the level of 
caviar consumption?

Provided that equation 5.16 follows the assumptions of the classical 
linear regression model, the ordinary least squares estimates of the 
parameters can be obtained and tested in the usual way for their statistical 
significance. For example, the difference in caviar consumption habits of 
men and women can be tested by examining 0 : 0δ =H  using the Student’s 
t-test. To test whether the caviar consumption level of a banker is the same 
as that of a politician, we can test 0 1 2: 0γ − γ =H  using a t- or an F-test.

5.1.9 � Using Dummy Variables with Continuous Quantitative 
Variables

Suppose we are investigating whether having high blood pressure is 
a risk factor for cardiovascular events, controlling for age and cholesterol 
levels. For this study we gathered data from a sample of patients presented 
in Table–2.

Table 2: Cardiovascular Event and Blood Pressure

ID Systolic 
BP

Diastolic 
BP

Age Cholesterol Cardiovascular 
Event

1 142 99 30 196 FALSE

2 147 100 71 289 TRUE

DDE, P
on

dic
he

rry
 U

niv
ers

ity



Notes

209

ID Systolic 
BP

Diastolic 
BP

Age Cholesterol Cardiovascular 
Event

3 172 97 52 245 FALSE

4 115 81 73 186 TRUE

5 142 95 53 235 FALSE

6 131 64 52 286 FALSE

7 103 69 53 203 TRUE

8 175 63 34 212 FALSE

9 147 83 69 270 TRUE

10 126 91 73 244 TRUE

11 142 61 41 250 FALSE

12 167 75 61 197 FALSE

13 103 97 59 155 FALSE

14 137 84 67 176 FALSE

15 129 70 72 292 TRUE

16 108 103 32 196 FALSE

17 158 84 53 292 TRUE

18 146 103 51 202 FALSE

19 153 99 56 208 FALSE

20 123 102 59 270 FALSE

21 122 69 36 277 FALSE

22 179 105 57 218 TRUE

23 171 63 34 251 FALSE

24 118 107 52 214 TRUE

25 130 84 58 265 FALSE

26 110 61 32 166 TRUE

27 107 64 67 265 TRUE
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ID Systolic 
BP

Diastolic 
BP

Age Cholesterol Cardiovascular 
Event

28 125 67 56 200 TRUE

29 137 103 61 178 TRUE

30 157 103 34 242 FALSE

31 116 103 41 290 TRUE

32 107 93 51 281 FALSE

33 147 102 64 222 FALSE

34 125 94 71 236 TRUE

35 109 83 70 201 TRUE

36 116 76 46 262 FALSE

37 131 78 46 170 TRUE

38 101 66 60 189 TRUE

39 105 67 56 166 FALSE

40 174 70 53 216 FALSE

While the dependent variable (the individual experienced a 
cardiovascular event within the 5-year follow-up period) is dichotomous 
(True/False), all the explanatory variables are continuous. To classify as 
high or low blood pressure, we need to convert the blood pressure data 
into dummy variable.

Based on medical guidelines, we define high blood pressure as systolic 
blood pressure ≥ 140 mmHg or diastolic blood pressure ≥ 90 mmHg. We 
then create a dummy variable BP that takes values 0 and 1 depending on 
the systolic and diastolic blood pressure reading of patients:

1 if systolic 140 or diastolic 90
0 if systolic<140 and diastolic<90

≥ ≥
= 


iBP

We can now model the relationship between experiencing a 
cardiovascular event (e.g., heart attack) and age, cholesterol level and high 
blood pressure. Assuming that having high blood pressure increases the 
baseline chances of experiencing a cardiovascular event, we define the 
intercept term of the regression model as:
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β0i = β0 + δBPi

We are essentially postulating that the baseline chances of experiencing 
a cardiovascular event is a patient varying variable; for patients not 
suffering from high blood pressure, the baseline chance is the same as 
in the general population, but for patients suffering from high blood 
pressure, the chances increase by δ, which is expected to carry a positive 
sign. Therefore, the regression model can be framed as:

		        0 1 2δ= β + +β +β + εi i i i iCVE BP A C 	�  (5.18)
Where:

the individual experiences a cardiovascular event
age of the individual
cholestrol level of the individual

=
=
=

i

i

i

CVE
A
C

If we have grounds for assuming that blood pressure also affects the 
accumulation of cholesterol in human body, we can further modify the 
regression model to incorporate an interaction variable ( )i iBPC  that will 
measure how high blood pressure and cholesterol level interact to affect the 
chances of experiencing a cardiovascular event. In this case, the regression 
equation can be modified as:

		  ( )0 1 2δ γ= β + +β +β + + εi i i i i i iCVE BP A C BPC 	�  (5.19)

But studies have shown that as age increases the blood pressure also 
increases. This means that there may be an interaction effect of blood 
pressure and age on the likelihood of experiencing a cardiovascular event. 
If so, we can modify our equation again to account for this new fact:

( ) ( )0 1 2 1, ,δ η γ= β + +β + +β + + ε = …i i i i i i i i iCVE BP A BP A C BPC i N 	
� (5.20)

If there is no interaction effect then , 0η γ =  and the equation 5.20 will 
reduce to equation 5.18 proposed earlier. An F-test can be used to check 
whether all parameter estimates are nonzero simultaneously or not.

An alternative to use is the Binary Logistic Regression, especially since 
the outcome variable is dichotomous. In that case the logistic regression 
model would look like:

		  0 1 2 3 4= β +β +β +β +β +ωi i i i i iCVE A S D C 	�  (5.21)DDE, P
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Where:

systolic blood pressure
diastolic blood pressure

=
=

i

i

S
D

But using the dummy variable approach has its advantage: if the 
relationship between blood pressure and cardiovascular risk is not strictly 
linear, the dummy variable might better capture this threshold effect. Also, 
for some audiences, the results using the dummy variable may be easier to 
communicate in the context of established high blood pressure guidelines.

5.1.10  Dummy Variables and the Chow Test

An alternative to using dummy variables to find out structural changes 
is to use the F-test suggested by G.C. Chow and hence also known as the 
Chow Test. To illustrate, suppose we have data from two separate samples 
with unequal number of elements but the same variables. Then we can 
use the two samples individually to generate two separate estimates of 
the same relationship between the outcome and the predictor variables. 
We can then check whether the relationship changes from one sample 
to the other which essentially means that we want to check whether the 
parameter estimates are equal or not.

Consider the following data on domestic consumption and national 
income (in billions of rupees) for two different, yet contiguous, time 
periods of an economy:

Table 3: National Income and Domestic Consumption

Year National 
Income

Domestic 
Consumption

Year National 
Income

Domestic 
Consumption

1950 22480 12616 1960 27584 16506

1951 21987 14858 1961 24811 16741

1952 22426 12455 1962 29717 17603

1953 20996 13894 1963 26216 19858

1954 21315 13622 1964 25955 18495

1955 22299 13718 1965 22848 19887

1956 18616 13714 1966 24119 15524
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Year National 
Income

Domestic 
Consumption

Year National 
Income

Domestic 
Consumption

1957 21030 14032 1967 28924 18037

1958 18905 12931 1968 26738 19764

1959 22364 13669 1969 28310 16800

The consumption function for the two separate time periods will 
have the same variables and the same structural relationship between the 
outcome and predictor variables but will be estimated using two separate 
samples of data. Thus, the two regression equations can be formulated as:

				    0 1= β +βA A A A
i iC Y 	�  (5.22)

				    0 1= β +βB B B B
i iC Y 	�  (5.23)

	 Formulated in this way, we are interested in knowing whether 
these two relationships (their estimates, actually) differ in a statistically 
significant way? This boils down to testing the null hypotheses bout the 
intercept and the slopes, namely:

0 0 0 0 1 0: and :β = β β = βA B A BH H

The intercept null hypothesis asks examines whether the consumption 
function shifted over the two time periods. The slope null hypothesis tests 
whether the marginal propensity to consume changed over the two time 
periods.

To answer these questions, we first, pool together all the observations 
from both the samples to form a single dataset and then estimate the 
following relationship:

			   0 1= γ + γpooled pooledC Y 	�  (5.24)

Using the parameter estimates, we calculate the predicted values of 
the outcome variable (domestic consumption), and then estimate the 
unexplained variance of the model in equation 5.24:

			   2 2 2ˆ∑ = ∑ −∑pooled pooled poolede c c 	�  (5.25)

If the two samples contained 1n  and 2n  elements and the number of 
parameters (intercept and the slopes) is K , then this sum of unexplained 
variances will have ( )1 2+ −n n K  degrees of freedom. A similar exercise 
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performed on the two samples separately will yield their respective sum of 
unexplained variances:

		     ( )2 2
1ˆ∑ = ∑ −∑ = −A A Ae c c df n K 	�  (5.26)

		     ( )2 2
2ˆ∑ = ∑ −∑ = −B B Be c c df n K 	�  (5.27)

We then add the two separate sum of unexplained variances to get 
the total unexplained variance with ( ) ( ) ( )1 2 1 2 2− + − = + −n K n K n n K  
degrees of freedom:

				    2 2∑ +∑A Be e 	�  (5.28)

Next, subtract this from the pooled sum of unexplained variances to 
get, with ( ) ( )1 2 1 2 2+ − − + − =n n K n n K K  degrees of freedom:

			   ( )2 2 2∑ − ∑ +∑pooled A Be e e 	�  (5.29)

Then to perform the omnibus check that all parameter differences are 
nonzero, we calculate the following F ratio:

			 
( )

( )

2 2 2

*
2 2

1 2 2

∑ − ∑ +∑

=
∑ +∑
+ −

pooled A B

A B

e e e
KF

e e
n n K

	� (5.30)

At 5% level of significance ( 0.05α = ), if *
0.05>F F , we reject the null 

hypothesis, 0 :β = βA B
i iH  and conclude that the two sets of parameter 

estimates, and hence the two functions, differ from each other in a 
statistically significant way. In other words, not only did the consumption 
function shift from period A to period B but also the marginal propensity 
to consume changed between the two time periods.

The disadvantage of the Chow Test is that since it is an omnibus test, 
it does not tell us the cause of the structural change. It can only test for a 
structural break but cannot pinpoint what caused that break. In contrast, 
the dummy variable approach to studying structural changes can pinpoint 
the exact cause of the break—intercept or slope or an interaction variable. 
This limit is also reflected in the fact that unless we know the exact break 
point, the Chow test cannot be performed. The dummy variable approach 
is more flexible as it can incorporate discontinuous periods of time and 
test across multiple break points.DDE, P
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Simply put, while the Chow Test is a straightforward way to test for a 
structural break at a known date, the Dummy Variable approach is more 
versatile, pinpointing the nature of the change, and useful even when the 
breakpoint’s date is unknown.

5.1.11  Summary

Categorical variables, which lack a natural numerical scale, cannot be 
directly included in linear regression models designed to handle numerical 
data. Dummy variables, also known as binary, indicator, or categorical 
variables, provide a solution to this issue by encoding categorical 
information into a format suitable for regression analysis. By assigning 
values of 0 and 1 to represent the presence or absence of a particular 
category, dummy variables act as a bridge between qualitative data and 
quantitative models.

One of the primary applications of dummy variables is accounting 
for the impact of categorical factors on the outcome variable of interest. 
For instance, during periods of economic crises, the relationship between 
gross domestic consumption and national income may shift due to external 
forces. By creating a dummy variable that takes the value of 1 during crisis 
years and 0 during normal years, researchers can incorporate the effect of 
these episodes into their regression models.

Dummy variables can be employed to capture changes in either 
the intercept or the slope of the regression line. If economic crises 
are hypothesized to affect the level of autonomous consumption, the 
dummy variable can be used to model a shift in the intercept parameter. 
Alternatively, if the crises are expected to influence the marginal propensity 
to consume, the dummy variable can be included as an interaction term 
with the income variable, thereby modifying the slope parameter.

In addition to modeling economic events, dummy variables find 
applications in various other contexts. They can be used to control for 
seasonality in time series data, account for qualitative characteristics such 
as gender and profession in consumption or demand models, and test for 
interaction effects between categorical and continuous variables.

When dealing with categorical variables with more than two categories, 
researchers must exercise caution to avoid the “dummy variable trap,” which 
occurs when dummy variables are created for all possible states, leading 
to exact multicollinearity. To circumvent this issue, it is recommended to 

DDE, P
on

dic
he

rry
 U

niv
ers

ity



Notes

216

create n – 1 dummy variables for a categorical variable with n categories, 
where one category is designated as the reference level.

Dummy variables can be employed in conjunction with continuous 
quantitative variables to investigate more complex relationships. For 
instance, in a study examining the risk factors for cardiovascular events, 
a dummy variable could be created to represent high blood pressure, 
allowing researchers to assess its impact on the likelihood of experiencing 
such events while controlling for other factors like age and cholesterol 
levels.

An alternative approach to using dummy variables for detecting 
structural changes in regression relationships across different samples or 
time periods is the Chow test. While the Chow test provides an omnibus 
test for the presence of a structural break, it does not pinpoint the specific 
nature of the change. In contrast, the dummy variable approach offers 
greater versatility by allowing researchers to identify whether the structural 
change manifests as a shift in the intercept, a change in the slope, or the 
presence of an interaction effect.

5.1.12  Keywords

Dummy Variables: Binary (0/1) variables used to represent categorical 
data in regression models.

Categorical Variables: Variables that lack a natural numerical scale, 
such as gender, profession, or industry type.

Intercept Dummy: A dummy variable used to model a shift in the 
intercept of a regression line due to a categorical factor.

Slope Dummy: A dummy variable used as an interaction term to 
model a change in the slope coefficient due to a categorical factor.

Dummy Variable Trap: The situation of exact multicollinearity that 
arises when dummy variables are created for all categories of a variable.

Seasonal Dummies: Dummy variables used to control for seasonal 
patterns or trends in time series data.

Interaction Variable: The product of a dummy variable and a 
continuous variable, used to model interaction effects between 
categorical and quantitative variables.DDE, P
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Chow Test: A statistical test used to detect structural breaks or changes 
in regression relationships across different samples or time periods.

Confounding Variables: Variables that can influence the relationship 
between the dependent and independent variables, which need to be 
controlled for using dummy variables.

Treatment Effects Model: A regression model that uses dummy 
variables to represent both time (before and after treatment) and 
group membership (treatment or control group) to study the effects of 
a treatment or intervention.

5.1.13  Self-assessment Questions

1.	 Explain the concept of a dummy variable and its use in regression 
analysis. Provide an example from economics or finance where 
dummy variables would be useful.

2.	 Discuss the interpretation of the coefficients associated with dummy 
variables in a linear regression model. How does this interpretation 
differ from that of coefficients associated with continuous variables?

3.	 What are the potential problems that can arise when using dummy 
variables in a regression model? How can these problems be addressed?

4.	 Explain the concept of a base category when using dummy variables. 
How is the base category chosen, and what are the implications of 
this choice?

5.	 Discuss the use of interaction terms involving dummy variables in 
regression analysis. Provide an example where such an interaction 
term would be useful in understanding the relationship between 
variables.

6.	� Explain the difference between using dummy variables as part of 
the main effects and using them as part of an interaction effect in a 
regression model. Provide an example from economics or finance 
to illustrate your explanation.

7.	� Discuss the concept of dummy variable trap and how it can be avoided 
when including multiple dummy variables in a regression model.

8.	� In what situations would you recommend using dummy variables 
instead of continuous variables in a regression model? What are the 
potential advantages and disadvantages of this approach?DDE, P
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9.	� Explain how the interpretation of a dummy variable coefficient 
changes when the base category is changed. Provide an example to 
illustrate your explanation.

10.	� Discuss the use of nested dummy variables in regression analysis. 
When would this approach be useful, and what are the potential 
limitations?

11.	 Consider the following data on housing prices (in thousands of 
dollars) and various characteristics of houses in a city:

Price Bedrooms Bathrooms Age Garage

485 3 3 13 0

457 3 1 17 1

475 3 2 10 0

461 2 3 26 0

393 2 3 27 1

489 4 3 9 0

480 2 2 7 1

361 4 3 29 0

363 5 2 25 1

490 5 1 13 0

426 5 3 20 0

474 4 3 8 0

324 5 3 28 1

451 2 2 26 0

302 2 1 25 0

403 4 2 18 0

413 4 3 16 0

319 5 1 8 1

419 4 1 23 1

413 4 3 22 0
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Price Bedrooms Bathrooms Age Garage

473 4 2 29 0

385 4 1 25 1

448 3 1 24 1

378 5 3 11 0

471 4 2 13 1

474 2 3 28 0

326 5 2 22 1

445 5 2 8 1

417 3 2 22 0

315 2 2 30 1

�	� Estimate a multiple regression model with the housing price as 
the dependent variable and the other variables as independent 
variables, including a dummy variable for the presence of a garage. 
Test the significance of the garage dummy variable coefficient.

12.�	 Using the same data from Question 11, estimate a regression 
model that includes interaction terms between the garage dummy 
variable and the number of bedrooms and bathrooms. Interpret the 
coefficients of the interaction terms.

13.	� Consider the following data on weekly earnings (in dollars) and 
various characteristics of individuals in a city:

Earnings Education Experience Gender

862 18 19 Male

653 15 9 Male

999 14 17 Female

664 18 14 Male

770 12 8 Male

739 13 19 Female

874 16 11 Male
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Earnings Education Experience Gender

924 18 19 Female

997 15 20 Female

654 13 9 Male

683 17 18 Male

704 20 17 Male

663 15 19 Female

636 16 11 Male

654 14 12 Female

836 14 9 Female

880 12 5 Male

632 18 17 Female

683 14 20 Male

908 15 18 Male

838 20 20 Male

883 12 20 Female

864 15 15 Female

843 18 9 Female

935 15 20 Female

977 16 14 Male

687 17 4 Male

670 17 14 Female

688 12 17 Female

942 16 8 Female

	� Estimate a multiple regression model with earnings as the dependent 
variable and the other variables as independent variables, including 
a dummy variable for gender. Test the significance of the gender 
dummy variable coefficient.
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14.	 Using the same data from Question 13, estimate a regression model 
that includes an interaction term between the gender dummy 
variable and the education level. Interpret the coefficient of the 
interaction term.

15.	 Consider the following data on stock returns (in percentage) and 
various characteristics of companies:

Company Return Size Leverage Industry

22 7 Large High Tech

7 16 Small Low Finance

12 13 Small Low Tech

20 7 Large Low Tech

29 17 Small High Finance

23 11 Large Low Finance

9 13 Large High Finance

13 12 Large Low Tech

3 15 Large High Finance

16 14 Small High Finance

17 18 Small Low Tech

25 20 Small High Tech

30 14 Large Low Manufacturing

26 18 Large High Finance

27 20 Small High Tech

11 8 Small Low Tech

14 6 Large High Finance

24 5 Small High Finance

4 5 Small Low Tech

6 10 Large Low Finance

2 8 Small Low Manufacturing
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Company Return Size Leverage Industry

10 8 Large Low Finance

19 5 Large High Tech

8 15 Small High Tech

1 12 Large High Tech

18 5 Large Low Manufacturing

28 5 Small High Manufacturing

5 10 Large High Manufacturing

21 12 Large High Finance

15 7 Small High Tech

	� Estimate a multiple regression model with stock returns as 
the dependent variable and the other variables as independent 
variables, including dummy variables for company size, leverage, 
and industry. Test the joint significance of the industry dummy 
variable coefficients.

16.	 Consider the following data on monthly sales (in thousands of 
dollars) of a retail store and various factors:

Sales Promotion Season Location

123 0 Spring Suburban

199 1 Summer Urban

179 1 Summer Suburban

109 0 Winter Suburban

193 0 Winter Urban

100 0 Spring Urban

133 0 Winter Suburban

131 0 Summer Urban

166 1 Winter Urban

118 0 Fall Suburban
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Sales Promotion Season Location

127 1 Winter Suburban

135 0 Spring Suburban

149 1 Winter Suburban

138 0 Fall Urban

111 0 Winter Urban

163 0 Winter Urban

181 1 Spring Suburban

155 1 Summer Suburban

161 1 Fall Urban

121 0 Fall Urban

109 0 Winter Suburban

161 0 Fall Suburban

135 0 Fall Urban

178 1 Summer Urban

108 0 Summer Urban

191 1 Winter Suburban

123 1 Winter Urban

129 1 Summer Urban

177 0 Fall Suburban

117 0 Fall Suburban

	� Estimate a multiple regression model with sales as the dependent 
variable and the other variables as independent variables, including 
dummy variables for promotion, season, and location. Test the 
joint significance of the season dummy variable coefficients.

17.�	 Using the same data from Question 16, estimate a regression model 
that includes interaction terms between the promotion dummy 
variable and the season dummy variables. Interpret the coefficients 
of the interaction terms.
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18.	� Consider the following data on hourly wages (in dollars) and 
various characteristics of employees in a firm:

Wage Education Experience Gender Department

32 22 11 Male Finance

22 19 15 Male Finance

34 20 5 Male Sales

25 20 4 Male Sales

20 17 11 Male Marketing

24 21 15 Female Marketing

29 14 14 Male Marketing

22 15 15 Female Marketing

24 18 7 Female Marketing

32 22 14 Female Sales

32 21 13 Male Marketing

25 21 5 Female Finance

20 16 2 Female Finance

35 16 13 Male Finance

30 20 12 Male Marketing

21 17 13 Male Marketing

31 16 5 Male Sales

29 18 6 Female Marketing

35 18 2 Female Finance

32 18 9 Female Sales

33 19 8 Female Finance

35 15 4 Female Sales

20 21 13 Male Sales

30 18 9 Male Sales
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Wage Education Experience Gender Department

30 19 8 Male Sales

35 15 4 Female Sales

33 22 14 Female Finance

22 20 13 Male Finance

23 19 10 Female Finance

31 15 9 Female Marketing

	� Estimate a multiple regression model with wages as the dependent 
variable and the other variables as independent variables, including 
dummy variables for gender and department. Test the significance 
of the gender dummy variable coefficient.

19.	 Using the same data from Question 18, estimate a regression model 
that includes an interaction term between the gender dummy 
variable and the experience level. Interpret the coefficient of the 
interaction term.

20.	 Consider the following data on customer satisfaction scores (on a 
scale of 1 to 10) and various characteristics of restaurants:

Satisfaction Price Service Cuisine

5 Low Poor Italian

10 High Poor Mexican

7 Low Excellent Italian

8 High Poor Mexican

5 Low Good Chinese

7 High Excellent Mexican

6 High Good Italian

10 Low Good Chinese

7 Low Excellent Chinese

6 High Good Italian

5 Low Good Mexican
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Satisfaction Price Service Cuisine

10 High Excellent French

8 Low Poor Italian

7 Low Good Italian

6 High Good Mexican

8 High Excellent Italian

10 High Good Mexican

9 High Poor Chinese

8 High Poor Italian

8 Low Good Italian

7 Low Poor French

10 Low Poor French

5 Low Excellent Italian

5 High Poor Mexican

9 High Excellent French

6 Low Excellent Chinese

9 Low Poor Italian

8 High Excellent French

9 High Good Mexican

6 Low Excellent Mexican

	� Estimate a multiple regression model with customer satisfaction 
as the dependent variable and the other variables as independent 
variables, including dummy variables for price, service, and 
cuisine. Test the joint significance of the cuisine dummy variable 
coefficients.
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APPENDIX

Statistical Tables

1.	 Areas Under the Standard Normal Distribution Curve�
	�  [Pages 2 and 3]

2.	 Critical Values for the t-Distribution� [Page 4]

3.	 Critical Values for the  Distribution� [Pages 5 to 11]

4.	 Critical Values for the F-Distribution� [Pages 12 to 14]

5.	 Critical Values for the Durbin-Watson Test� [Pages 15 to 20]

z −0.00 −0.01 −0.02 −0.03 −0.04 −0.05 −0.06 −0.07 −0.08 −0.09

–4.0 0.00003 0.00003 0.00003 0.00003 0.00003 0.00003 0.00002 0.00002 0.00002 0.00002

–3.9 0.00005 0.00005 0.00004 0.00004 0.00004 0.00004 0.00004 0.00004 0.00003 0.00003

–3.8 0.00007 0.00007 0.00007 0.00006 0.00006 0.00006 0.00006 0.00005 0.00005 0.00005

–3.7 0.00011 0.00010 0.00010 0.00010 0.00009 0.00009 0.00008 0.00008 0.00008 0.00008

–3.6 0.00016 0.00015 0.00015 0.00014 0.00014 0.00013 0.00013 0.00012 0.00012 0.00011

–3.5 0.00023 0.00022 0.00022 0.00021 0.00020 0.00019 0.00019 0.00018 0.00017 0.00017

−3.4 0.00034 0.00032 0.00031 0.00030 0.00029 0.00028 0.00027 0.00026 0.00025 0.00024

−3.3 0.00048 0.00047 0.00045 0.00043 0.00042 0.00040 0.00039 0.00038 0.00036 0.00035

−3.2 0.00069 0.00066 0.00064 0.00062 0.00060 0.00058 0.00056 0.00054 0.00052 0.00050

−3.1 0.00097 0.00094 0.00090 0.00087 0.00084 0.00082 0.00079 0.00076 0.00074 0.00071

−3.0 0.00135 0.00131 0.00126 0.00122 0.00118 0.00114 0.00111 0.00107 0.00104 0.00100

−2.9 0.00187 0.00181 0.00175 0.00169 0.00164 0.00159 0.00154 0.00149 0.00144 0.00139

−2.8 0.00256 0.00248 0.00240 0.00233 0.00226 0.00219 0.00212 0.00205 0.00199 0.00193

−2.7 0.00347 0.00336 0.00326 0.00317 0.00307 0.00298 0.00289 0.00280 0.00272 0.00264

−2.6 0.00466 0.00453 0.00440 0.00427 0.00415 0.00402 0.00391 0.00379 0.00368 0.00357

−2.5 0.00621 0.00604 0.00587 0.00570 0.00554 0.00539 0.00523 0.00508 0.00494 0.00480

−2.4 0.00820 0.00798 0.00776 0.00755 0.00734 0.00714 0.00695 0.00676 0.00657 0.00639

−2.3 0.01072 0.01044 0.01017 0.00990 0.00964 0.00939 0.00914 0.00889 0.00866 0.00842

−2.2 0.01390 0.01355 0.01321 0.01287 0.01255 0.01222 0.01191 0.01160 0.01130 0.01101

−2.1 0.01786 0.01743 0.01700 0.01659 0.01618 0.01578 0.01539 0.01500 0.01463 0.01426

−2.0 0.02275 0.02222 0.02169 0.02118 0.02068 0.02018 0.01970 0.01923 0.01876 0.01831

−1.9 0.02872 0.02807 0.02743 0.02680 0.02619 0.02559 0.02500 0.02442 0.02385 0.02330

−1.8 0.03593 0.03515 0.03438 0.03362 0.03288 0.03216 0.03144 0.03074 0.03005 0.02938

−1.7 0.04457 0.04363 0.04272 0.04182 0.04093 0.04006 0.03920 0.03836 0.03754 0.03673

−1.6 0.05480 0.05370 0.05262 0.05155 0.05050 0.04947 0.04846 0.04746 0.04648 0.04551
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−1.5 0.06681 0.06552 0.06426 0.06301 0.06178 0.06057 0.05938 0.05821 0.05705 0.05592

−1.4 0.08076 0.07927 0.07780 0.07636 0.07493 0.07353 0.07215 0.07078 0.06944 0.06811

−1.3 0.09680 0.09510 0.09342 0.09176 0.09012 0.08851 0.08692 0.08534 0.08379 0.08226

−1.2 0.11507 0.11314 0.11123 0.10935 0.10749 0.10565 0.10383 0.10204 0.10027 0.09853

−1.1 0.13567 0.13350 0.13136 0.12924 0.12714 0.12507 0.12302 0.12100 0.11900 0.11702

−1.0 0.15866 0.15625 0.15386 0.15151 0.14917 0.14686 0.14457 0.14231 0.14007 0.13786

−0.9 0.18406 0.18141 0.17879 0.17619 0.17361 0.17106 0.16853 0.16602 0.16354 0.16109

−0.8 0.21186 0.20897 0.20611 0.20327 0.20045 0.19766 0.19489 0.19215 0.18943 0.18673

−0.7 0.24196 0.23885 0.23576 0.23270 0.22965 0.22663 0.22363 0.22065 0.21770 0.21476

−0.6 0.27425 0.27093 0.26763 0.26435 0.26109 0.25785 0.25463 0.25143 0.24825 0.24510

−0.5 0.30854 0.30503 0.30153 0.29806 0.29460 0.29116 0.28774 0.28434 0.28096 0.27760

−0.4 0.34458 0.34090 0.33724 0.33360 0.32997 0.32636 0.32276 0.31918 0.31561 0.31207

−0.3 0.38209 0.37828 0.37448 0.37070 0.36693 0.36317 0.35942 0.35569 0.35197 0.34827

−0.2 0.42074 0.41683 0.41294 0.40905 0.40517 0.40129 0.39743 0.39358 0.38974 0.38591

−0.1 0.46017 0.45620 0.45224 0.44828 0.44433 0.44038 0.43644 0.43251 0.42858 0.42465

−0.0 0.50000 0.49601 0.49202 0.48803 0.48405 0.48006 0.47608 0.47210 0.46812 0.46414

z 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 0.50000 0.50399 0.50798 0.51197 0.51595 0.51994 0.52392 0.52790 0.53188 0.53586

0.1 0.53983 0.54380 0.54776 0.55172 0.55567 0.55962 0.56360 0.56749 0.57142 0.57535

0.2 0.57926 0.58317 0.58706 0.59095 0.59483 0.59871 0.60257 0.60642 0.61026 0.61409

0.3 0.61791 0.62172 0.62552 0.62930 0.63307 0.63683 0.64058 0.64431 0.64803 0.65173

0.4 0.65542 0.65910 0.66276 0.66640 0.67003 0.67364 0.67724 0.68082 0.68439 0.68793

0.5 0.69146 0.69497 0.69847 0.70194 0.70540 0.70884 0.71226 0.71566 0.71904 0.72240

0.6 0.72575 0.72907 0.73237 0.73565 0.73891 0.74215 0.74537 0.74857 0.75175 0.75490

0.7 0.75804 0.76115 0.76424 0.76730 0.77035 0.77337 0.77637 0.77935 0.78230 0.78524

0.8 0.78814 0.79103 0.79389 0.79673 0.79955 0.80234 0.80511 0.80785 0.81057 0.81327

0.9 0.81594 0.81859 0.82121 0.82381 0.82639 0.82894 0.83147 0.83398 0.83646 0.83891

1.0 0.84134 0.84375 0.84614 0.84849 0.85083 0.85314 0.85543 0.85769 0.85993 0.86214

1.1 0.86433 0.86650 0.86864 0.87076 0.87286 0.87493 0.87698 0.87900 0.88100 0.88298

1.2 0.88493 0.88686 0.88877 0.89065 0.89251 0.89435 0.89617 0.89796 0.89973 0.90147

1.3 0.90320 0.90490 0.90658 0.90824 0.90988 0.91149 0.91308 0.91466 0.91621 0.91774

1.4 0.91924 0.92073 0.92220 0.92364 0.92507 0.92647 0.92785 0.92922 0.93056 0.93189

1.5 0.93319 0.93448 0.93574 0.93699 0.93822 0.93943 0.94062 0.94179 0.94295 0.94408

1.6 0.94520 0.94630 0.94738 0.94845 0.94950 0.95053 0.95154 0.95254 0.95352 0.95449

1.7 0.95543 0.95637 0.95728 0.95818 0.95907 0.95994 0.96080 0.96164 0.96246 0.96327

1.8 0.96407 0.96485 0.96562 0.96638 0.96712 0.96784 0.96856 0.96926 0.96995 0.97062

1.9 0.97128 0.97193 0.97257 0.97320 0.97381 0.97441 0.97500 0.97558 0.97615 0.97670

2.0 0.97725 0.97778 0.97831 0.97882 0.97932 0.97982 0.98030 0.98077 0.98124 0.98169

2.1 0.98214 0.98257 0.98300 0.98341 0.98382 0.98422 0.98461 0.98500 0.98537 0.98574

2.2 0.98610 0.98645 0.98679 0.98713 0.98745 0.98778 0.98809 0.98840 0.98870 0.98899

2.3 0.98928 0.98956 0.98983 0.99010 0.99036 0.99061 0.99086 0.99111 0.99134 0.99158

2.4 0.99180 0.99202 0.99224 0.99245 0.99266 0.99286 0.99305 0.99324 0.99343 0.99361
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2.5 0.99379 0.99396 0.99413 0.99430 0.99446 0.99461 0.99477 0.99492 0.99506 0.99520

2.6 0.99534 0.99547 0.99560 0.99573 0.99585 0.99598 0.99609 0.99621 0.99632 0.99643

2.7 0.99653 0.99664 0.99674 0.99683 0.99693 0.99702 0.99711 0.99720 0.99728 0.99736

2.8 0.99744 0.99752 0.99760 0.99767 0.99774 0.99781 0.99788 0.99795 0.99801 0.99807

2.9 0.99813 0.99819 0.99825 0.99831 0.99836 0.99841 0.99846 0.99851 0.99856 0.99861

3.0 0.99865 0.99869 0.99874 0.99878 0.99882 0.99886 0.99889 0.99893 0.99896 0.99900

3.1 0.99903 0.99906 0.99910 0.99913 0.99916 0.99918 0.99921 0.99924 0.99926 0.99929

3.2 0.99931 0.99934 0.99936 0.99938 0.99940 0.99942 0.99944 0.99946 0.99948 0.99950

3.3 0.99952 0.99953 0.99955 0.99957 0.99958 0.99960 0.99961 0.99962 0.99964 0.99965

3.4 0.99966 0.99968 0.99969 0.99970 0.99971 0.99972 0.99973 0.99974 0.99975 0.99976

3.5 0.99977 0.99978 0.99978 0.99979 0.99980 0.99981 0.99981 0.99982 0.99983 0.99983

3.6 0.99984 0.99985 0.99985 0.99986 0.99986 0.99987 0.99987 0.99988 0.99988 0.99989

3.7 0.99989 0.99990 0.99990 0.99990 0.99991 0.99991 0.99992 0.99992 0.99992 0.99992

3.8 0.99993 0.99993 0.99993 0.99994 0.99994 0.99994 0.99994 0.99995 0.99995 0.99995

3.9 0.99995 0.99995 0.99996 0.99996 0.99996 0.99996 0.99996 0.99996 0.99997 0.99997

4.0 0.99997 0.99997 0.99997 0.99997 0.99997 0.99997 0.99998 0.99998 0.99998 0.99998

One-sided 75% 80% 85% 90% 95% 97.50% 99% 99.50% 99.75% 99.90% 99.95%

Two-sided 50% 60% 70% 80% 90% 95% 98% 99% 99.50% 99.80% 99.90%

1 1.000 1.376 1.963 3.078 6.314 12.706 31.821 63.657 127.321 318.309 636.619

2 0.816 1.061 1.386 1.886 2.920 4.303 6.965 9.925 14.089 22.327 31.599

3 0.765 0.978 1.250 1.638 2.353 3.182 4.541 5.841 7.453 10.215 12.924

4 0.741 0.941 1.190 1.533 2.132 2.776 3.747 4.604 5.598 7.173 8.610

5 0.727 0.920 1.156 1.476 2.015 2.571 3.365 4.032 4.773 5.893 6.869

6 0.718 0.906 1.134 1.440 1.943 2.447 3.143 3.707 4.317 5.208 5.959

7 0.711 0.896 1.119 1.415 1.895 2.365 2.998 3.499 4.029 4.785 5.408

8 0.706 0.889 1.108 1.397 1.860 2.306 2.896 3.355 3.833 4.501 5.041

9 0.703 0.883 1.100 1.383 1.833 2.262 2.821 3.250 3.690 4.297 4.781

10 0.700 0.879 1.093 1.372 1.812 2.228 2.764 3.169 3.581 4.144 4.587

11 0.697 0.876 1.088 1.363 1.796 2.201 2.718 3.106 3.497 4.025 4.437

12 0.695 0.873 1.083 1.356 1.782 2.179 2.681 3.055 3.428 3.930 4.318

13 0.694 0.870 1.079 1.350 1.771 2.160 2.650 3.012 3.372 3.852 4.221

14 0.692 0.868 1.076 1.345 1.761 2.145 2.624 2.977 3.326 3.787 4.140

15 0.691 0.866 1.074 1.341 1.753 2.131 2.602 2.947 3.286 3.733 4.073

16 0.690 0.865 1.071 1.337 1.746 2.120 2.583 2.921 3.252 3.686 4.015

17 0.689 0.863 1.069 1.333 1.740 2.110 2.567 2.898 3.222 3.646 3.965

18 0.688 0.862 1.067 1.330 1.734 2.101 2.552 2.878 3.197 3.610 3.922

19 0.688 0.861 1.066 1.328 1.729 2.093 2.539 2.861 3.174 3.579 3.883

20 0.687 0.860 1.064 1.325 1.725 2.086 2.528 2.845 3.153 3.552 3.850

21 0.686 0.859 1.063 1.323 1.721 2.080 2.518 2.831 3.135 3.527 3.819

22 0.686 0.858 1.061 1.321 1.717 2.074 2.508 2.819 3.119 3.505 3.792

23 0.685 0.858 1.060 1.319 1.714 2.069 2.500 2.807 3.104 3.485 3.767
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24 0.685 0.857 1.059 1.318 1.711 2.064 2.492 2.797 3.091 3.467 3.745

25 0.684 0.856 1.058 1.316 1.708 2.060 2.485 2.787 3.078 3.450 3.725

26 0.684 0.856 1.058 1.315 1.706 2.056 2.479 2.779 3.067 3.435 3.707

27 0.684 0.855 1.057 1.314 1.703 2.052 2.473 2.771 3.057 3.421 3.690

28 0.683 0.855 1.056 1.313 1.701 2.048 2.467 2.763 3.047 3.408 3.674

29 0.683 0.854 1.055 1.311 1.699 2.045 2.462 2.756 3.038 3.396 3.659

30 0.683 0.854 1.055 1.310 1.697 2.042 2.457 2.750 3.030 3.385 3.646

40 0.681 0.851 1.050 1.303 1.684 2.021 2.423 2.704 2.971 3.307 3.551

50 0.679 0.849 1.047 1.299 1.676 2.009 2.403 2.678 2.937 3.261 3.496

60 0.679 0.848 1.045 1.296 1.671 2.000 2.390 2.660 2.915 3.232 3.460

80 0.678 0.846 1.043 1.292 1.664 1.990 2.374 2.639 2.887 3.195 3.416

100 0.677 0.845 1.042 1.290 1.660 1.984 2.364 2.626 2.871 3.174 3.390

120 0.677 0.845 1.041 1.289 1.658 1.980 2.358 2.617 2.860 3.160 3.373

∞ 0.674 0.842 1.036 1.282 1.645 1.960 2.326 2.576 2.807 3.090 3.291

One-sided 75% 80% 85% 90% 95% 97.50% 99% 99.50% 99.75% 99.90% 99.95%

Two-sided 50% 60% 70% 80% 90% 95% 98% 99% 99.50% 99.80% 99.90%

P

DF 0.995 0.975 0.2 0.1 0.05 0.025 0.02 0.01 0.005 0.002 0.001

1 0.0000393 0.000982 1.642 2.706 3.841 5.024 5.412 6.635 7.879 9.55 10.828

2 0.01 0.0506 3.219 4.605 5.991 7.378 7.824 9.21 10.597 12.429 13.816

3 0.0717 0.216 4.642 6.251 7.815 9.348 9.837 11.345 12.838 14.796 16.266

4 0.207 0.484 5.989 7.779 9.488 11.143 11.668 13.277 14.86 16.924 18.467

5 0.412 0.831 7.289 9.236 11.07 12.833 13.388 15.086 16.75 18.907 20.515

6 0.676 1.237 8.558 10.645 12.592 14.449 15.033 16.812 18.548 20.791 22.458

7 0.989 1.69 9.803 12.017 14.067 16.013 16.622 18.475 20.278 22.601 24.322

8 1.344 2.18 11.03 13.362 15.507 17.535 18.168 20.09 21.955 24.352 26.124

9 1.735 2.7 12.242 14.684 16.919 19.023 19.679 21.666 23.589 26.056 27.877

10 2.156 3.247 13.442 15.987 18.307 20.483 21.161 23.209 25.188 27.722 29.588

11 2.603 3.816 14.631 17.275 19.675 21.92 22.618 24.725 26.757 29.354 31.264

12 3.074 4.404 15.812 18.549 21.026 23.337 24.054 26.217 28.3 30.957 32.909

13 3.565 5.009 16.985 19.812 22.362 24.736 25.472 27.688 29.819 32.535 34.528

14 4.075 5.629 18.151 21.064 23.685 26.119 26.873 29.141 31.319 34.091 36.123

15 4.601 6.262 19.311 22.307 24.996 27.488 28.259 30.578 32.801 35.628 37.697

16 5.142 6.908 20.465 23.542 26.296 28.845 29.633 32 34.267 37.146 39.252

17 5.697 7.564 21.615 24.769 27.587 30.191 30.995 33.409 35.718 38.648 40.79

18 6.265 8.231 22.76 25.989 28.869 31.526 32.346 34.805 37.156 40.136 42.312

19 6.844 8.907 23.9 27.204 30.144 32.852 33.687 36.191 38.582 41.61 43.82

20 7.434 9.591 25.038 28.412 31.41 34.17 35.02 37.566 39.997 43.072 45.315

21 8.034 10.283 26.171 29.615 32.671 35.479 36.343 38.932 41.401 44.522 46.797

22 8.643 10.982 27.301 30.813 33.924 36.781 37.659 40.289 42.796 45.962 48.268

23 9.26 11.689 28.429 32.007 35.172 38.076 38.968 41.638 44.181 47.391 49.728

24 9.886 12.401 29.553 33.196 36.415 39.364 40.27 42.98 45.559 48.812 51.179
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25 10.52 13.12 30.675 34.382 37.652 40.646 41.566 44.314 46.928 50.223 52.62

26 11.16 13.844 31.795 35.563 38.885 41.923 42.856 45.642 48.29 51.627 54.052

27 11.808 14.573 32.912 36.741 40.113 43.195 44.14 46.963 49.645 53.023 55.476

28 12.461 15.308 34.027 37.916 41.337 44.461 45.419 48.278 50.993 54.411 56.892

29 13.121 16.047 35.139 39.087 42.557 45.722 46.693 49.588 52.336 55.792 58.301

30 13.787 16.791 36.25 40.256 43.773 46.979 47.962 50.892 53.672 57.167 59.703

31 14.458 17.539 37.359 41.422 44.985 48.232 49.226 52.191 55.003 58.536 61.098

32 15.134 18.291 38.466 42.585 46.194 49.48 50.487 53.486 56.328 59.899 62.487

33 15.815 19.047 39.572 43.745 47.4 50.725 51.743 54.776 57.648 61.256 63.87

34 16.501 19.806 40.676 44.903 48.602 51.966 52.995 56.061 58.964 62.608 65.247

35 17.192 20.569 41.778 46.059 49.802 53.203 54.244 57.342 60.275 63.955 66.619

36 17.887 21.336 42.879 47.212 50.998 54.437 55.489 58.619 61.581 65.296 67.985

37 18.586 22.106 43.978 48.363 52.192 55.668 56.73 59.893 62.883 66.633 69.346

38 19.289 22.878 45.076 49.513 53.384 56.896 57.969 61.162 64.181 67.966 70.703

39 19.996 23.654 46.173 50.66 54.572 58.12 59.204 62.428 65.476 69.294 72.055

40 20.707 24.433 47.269 51.805 55.758 59.342 60.436 63.691 66.766 70.618 73.402

P

DF 0.995 0.975 0.2 0.1 0.05 0.025 0.02 0.01 0.005 0.002 0.001

41 21.421 25.215 48.363 52.949 56.942 60.561 61.665 64.95 68.053 71.938 74.745

42 22.138 25.999 49.456 54.09 58.124 61.777 62.892 66.206 69.336 73.254 76.084

43 22.859 26.785 50.548 55.23 59.304 62.99 64.116 67.459 70.616 74.566 77.419

44 23.584 27.575 51.639 56.369 60.481 64.201 65.337 68.71 71.893 75.874 78.75

45 24.311 28.366 52.729 57.505 61.656 65.41 66.555 69.957 73.166 77.179 80.077

46 25.041 29.16 53.818 58.641 62.83 66.617 67.771 71.201 74.437 78.481 81.4

47 25.775 29.956 54.906 59.774 64.001 67.821 68.985 72.443 75.704 79.78 82.72

48 26.511 30.755 55.993 60.907 65.171 69.023 70.197 73.683 76.969 81.075 84.037

49 27.249 31.555 57.079 62.038 66.339 70.222 71.406 74.919 78.231 82.367 85.351

50 27.991 32.357 58.164 63.167 67.505 71.42 72.613 76.154 79.49 83.657 86.661

51 28.735 33.162 59.248 64.295 68.669 72.616 73.818 77.386 80.747 84.943 87.968

52 29.481 33.968 60.332 65.422 69.832 73.81 75.021 78.616 82.001 86.227 89.272

53 30.23 34.776 61.414 66.548 70.993 75.002 76.223 79.843 83.253 87.507 90.573

54 30.981 35.586 62.496 67.673 72.153 76.192 77.422 81.069 84.502 88.786 91.872

55 31.735 36.398 63.577 68.796 73.311 77.38 78.619 82.292 85.749 90.061 93.168

56 32.49 37.212 64.658 69.919 74.468 78.567 79.815 83.513 86.994 91.335 94.461

57 33.248 38.027 65.737 71.04 75.624 79.752 81.009 84.733 88.236 92.605 95.751

58 34.008 38.844 66.816 72.16 76.778 80.936 82.201 85.95 89.477 93.874 97.039

59 34.77 39.662 67.894 73.279 77.931 82.117 83.391 87.166 90.715 95.14 98.324

60 35.534 40.482 68.972 74.397 79.082 83.298 84.58 88.379 91.952 96.404 99.607

61 36.301 41.303 70.049 75.514 80.232 84.476 85.767 89.591 93.186 97.665 100.888

62 37.068 42.126 71.125 76.63 81.381 85.654 86.953 90.802 94.419 98.925 102.166

63 37.838 42.95 72.201 77.745 82.529 86.83 88.137 92.01 95.649 100.182 103.442

64 38.61 43.776 73.276 78.86 83.675 88.004 89.32 93.217 96.878 101.437 104.716
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65 39.383 44.603 74.351 79.973 84.821 89.177 90.501 94.422 98.105 102.691 105.988

66 40.158 45.431 75.424 81.085 85.965 90.349 91.681 95.626 99.33 103.942 107.258

67 40.935 46.261 76.498 82.197 87.108 91.519 92.86 96.828 100.554 105.192 108.526

68 41.713 47.092 77.571 83.308 88.25 92.689 94.037 98.028 101.776 106.44 109.791

69 42.494 47.924 78.643 84.418 89.391 93.856 95.213 99.228 102.996 107.685 111.055

70 43.275 48.758 79.715 85.527 90.531 95.023 96.388 100.425 104.215 108.929 112.317

71 44.058 49.592 80.786 86.635 91.67 96.189 97.561 101.621 105.432 110.172 113.577

72 44.843 50.428 81.857 87.743 92.808 97.353 98.733 102.816 106.648 111.412 114.835

73 45.629 51.265 82.927 88.85 93.945 98.516 99.904 104.01 107.862 112.651 116.092

74 46.417 52.103 83.997 89.956 95.081 99.678 101.074 105.202 109.074 113.889 117.346

75 47.206 52.942 85.066 91.061 96.217 100.839 102.243 106.393 110.286 115.125 118.599

76 47.997 53.782 86.135 92.166 97.351 101.999 103.41 107.583 111.495 116.359 119.85

77 48.788 54.623 87.203 93.27 98.484 103.158 104.576 108.771 112.704 117.591 121.1

78 49.582 55.466 88.271 94.374 99.617 104.316 105.742 109.958 113.911 118.823 122.348

79 50.376 56.309 89.338 95.476 100.749 105.473 106.906 111.144 115.117 120.052 123.594

80 51.172 57.153 90.405 96.578 101.879 106.629 108.069 112.329 116.321 121.28 124.839

P

DF 0.995 0.975 0.2 0.1 0.05 0.025 0.02 0.01 0.005 0.002 0.001

81 51.969 57.998 91.472 97.68 103.01 107.783 109.232 113.512 117.524 122.507 126.083

82 52.767 58.845 92.538 98.78 104.139 108.937 110.393 114.695 118.726 123.733 127.324

83 53.567 59.692 93.604 99.88 105.267 110.09 111.553 115.876 119.927 124.957 128.565

84 54.368 60.54 94.669 100.98 106.395 111.242 112.712 117.057 121.126 126.179 129.804

85 55.17 61.389 95.734 102.079 107.522 112.393 113.871 118.236 122.325 127.401 131.041

86 55.973 62.239 96.799 103.177 108.648 113.544 115.028 119.414 123.522 128.621 132.277

87 56.777 63.089 97.863 104.275 109.773 114.693 116.184 120.591 124.718 129.84 133.512

88 57.582 63.941 98.927 105.372 110.898 115.841 117.34 121.767 125.913 131.057 134.745

89 58.389 64.793 99.991 106.469 112.022 116.989 118.495 122.942 127.106 132.273 135.978

90 59.196 65.647 101.054 107.565 113.145 118.136 119.648 124.116 128.299 133.489 137.208

91 60.005 66.501 102.117 108.661 114.268 119.282 120.801 125.289 129.491 134.702 138.438

92 60.815 67.356 103.179 109.756 115.39 120.427 121.954 126.462 130.681 135.915 139.666

93 61.625 68.211 104.241 110.85 116.511 121.571 123.105 127.633 131.871 137.127 140.893

94 62.437 69.068 105.303 111.944 117.632 122.715 124.255 128.803 133.059 138.337 142.119

95 63.25 69.925 106.364 113.038 118.752 123.858 125.405 129.973 134.247 139.546 143.344

96 64.063 70.783 107.425 114.131 119.871 125 126.554 131.141 135.433 140.755 144.567

97 64.878 71.642 108.486 115.223 120.99 126.141 127.702 132.309 136.619 141.962 145.789

98 65.694 72.501 109.547 116.315 122.108 127.282 128.849 133.476 137.803 143.168 147.01

99 66.51 73.361 110.607 117.407 123.225 128.422 129.996 134.642 138.987 144.373 148.23

100 67.328 74.222 111.667 118.498 124.342 129.561 131.142 135.807 140.169 145.577 149.449

101 68.146 75.083 112.726 119.589 125.458 130.7 132.287 136.971 141.351 146.78 150.667

102 68.965 75.946 113.786 120.679 126.574 131.838 133.431 138.134 142.532 147.982 151.884
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103 69.785 76.809 114.845 121.769 127.689 132.975 134.575 139.297 143.712 149.183 153.099

104 70.606 77.672 115.903 122.858 128.804 134.111 135.718 140.459 144.891 150.383 154.314

105 71.428 78.536 116.962 123.947 129.918 135.247 136.86 141.62 146.07 151.582 155.528

106 72.251 79.401 118.02 125.035 131.031 136.382 138.002 142.78 147.247 152.78 156.74

107 73.075 80.267 119.078 126.123 132.144 137.517 139.143 143.94 148.424 153.977 157.952

108 73.899 81.133 120.135 127.211 133.257 138.651 140.283 145.099 149.599 155.173 159.162

109 74.724 82 121.192 128.298 134.369 139.784 141.423 146.257 150.774 156.369 160.372

110 75.55 82.867 122.25 129.385 135.48 140.917 142.562 147.414 151.948 157.563 161.581

111 76.377 83.735 123.306 130.472 136.591 142.049 143.7 148.571 153.122 158.757 162.788

112 77.204 84.604 124.363 131.558 137.701 143.18 144.838 149.727 154.294 159.95 163.995

113 78.033 85.473 125.419 132.643 138.811 144.311 145.975 150.882 155.466 161.141 165.201

114 78.862 86.342 126.475 133.729 139.921 145.441 147.111 152.037 156.637 162.332 166.406

115 79.692 87.213 127.531 134.813 141.03 146.571 148.247 153.191 157.808 163.523 167.61

116 80.522 88.084 128.587 135.898 142.138 147.7 149.383 154.344 158.977 164.712 168.813

117 81.353 88.955 129.642 136.982 143.246 148.829 150.517 155.496 160.146 165.9 170.016

118 82.185 89.827 130.697 138.066 144.354 149.957 151.652 156.648 161.314 167.088 171.217

119 83.018 90.7 131.752 139.149 145.461 151.084 152.785 157.8 162.481 168.275 172.418

120 83.852 91.573 132.806 140.233 146.567 152.211 153.918 158.95 163.648 169.461 173.617

P

DF 0.995 0.975 0.2 0.1 0.05 0.025 0.02 0.01 0.005 0.002 0.001

121 84.686 92.446 133.861 141.315 147.674 153.338 155.051 160.1 164.814 170.647 174.816

122 85.52 93.32 134.915 142.398 148.779 154.464 156.183 161.25 165.98 171.831 176.014

123 86.356 94.195 135.969 143.48 149.885 155.589 157.314 162.398 167.144 173.015 177.212

124 87.192 95.07 137.022 144.562 150.989 156.714 158.445 163.546 168.308 174.198 178.408

125 88.029 95.946 138.076 145.643 152.094 157.839 159.575 164.694 169.471 175.38 179.604

126 88.866 96.822 139.129 146.724 153.198 158.962 160.705 165.841 170.634 176.562 180.799

127 89.704 97.698 140.182 147.805 154.302 160.086 161.834 166.987 171.796 177.743 181.993

128 90.543 98.576 141.235 148.885 155.405 161.209 162.963 168.133 172.957 178.923 183.186

129 91.382 99.453 142.288 149.965 156.508 162.331 164.091 169.278 174.118 180.103 184.379

130 92.222 100.331 143.34 151.045 157.61 163.453 165.219 170.423 175.278 181.282 185.571

131 93.063 101.21 144.392 152.125 158.712 164.575 166.346 171.567 176.438 182.46 186.762

132 93.904 102.089 145.444 153.204 159.814 165.696 167.473 172.711 177.597 183.637 187.953

133 94.746 102.968 146.496 154.283 160.915 166.816 168.6 173.854 178.755 184.814 189.142

134 95.588 103.848 147.548 155.361 162.016 167.936 169.725 174.996 179.913 185.99 190.331

135 96.431 104.729 148.599 156.44 163.116 169.056 170.851 176.138 181.07 187.165 191.52

136 97.275 105.609 149.651 157.518 164.216 170.175 171.976 177.28 182.226 188.34 192.707

137 98.119 106.491 150.702 158.595 165.316 171.294 173.1 178.421 183.382 189.514 193.894

138 98.964 107.372 151.753 159.673 166.415 172.412 174.224 179.561 184.538 190.688 195.08

139 99.809 108.254 152.803 160.75 167.514 173.53 175.348 180.701 185.693 191.861 196.266
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140 100.655 109.137 153.854 161.827 168.613 174.648 176.471 181.84 186.847 193.033 197.451

141 101.501 110.02 154.904 162.904 169.711 175.765 177.594 182.979 188.001 194.205 198.635

142 102.348 110.903 155.954 163.98 170.809 176.882 178.716 184.118 189.154 195.376 199.819

143 103.196 111.787 157.004 165.056 171.907 177.998 179.838 185.256 190.306 196.546 201.002

144 104.044 112.671 158.054 166.132 173.004 179.114 180.959 186.393 191.458 197.716 202.184

145 104.892 113.556 159.104 167.207 174.101 180.229 182.08 187.53 192.61 198.885 203.366

146 105.741 114.441 160.153 168.283 175.198 181.344 183.2 188.666 193.761 200.054 204.547

147 106.591 115.326 161.202 169.358 176.294 182.459 184.321 189.802 194.912 201.222 205.727

148 107.441 116.212 162.251 170.432 177.39 183.573 185.44 190.938 196.062 202.39 206.907

149 108.291 117.098 163.3 171.507 178.485 184.687 186.56 192.073 197.211 203.557 208.086

150 109.142 117.985 164.349 172.581 179.581 185.8 187.678 193.208 198.36 204.723 209.265

151 109.994 118.871 165.398 173.655 180.676 186.914 188.797 194.342 199.509 205.889 210.443

152 110.846 119.759 166.446 174.729 181.77 188.026 189.915 195.476 200.657 207.054 211.62

153 111.698 120.646 167.495 175.803 182.865 189.139 191.033 196.609 201.804 208.219 212.797

154 112.551 121.534 168.543 176.876 183.959 190.251 192.15 197.742 202.951 209.383 213.973

155 113.405 122.423 169.591 177.949 185.052 191.362 193.267 198.874 204.098 210.547 215.149

156 114.259 123.312 170.639 179.022 186.146 192.474 194.384 200.006 205.244 211.71 216.324

157 115.113 124.201 171.686 180.094 187.239 193.584 195.5 201.138 206.39 212.873 217.499

158 115.968 125.09 172.734 181.167 188.332 194.695 196.616 202.269 207.535 214.035 218.673

159 116.823 125.98 173.781 182.239 189.424 195.805 197.731 203.4 208.68 215.197 219.846

160 117.679 126.87 174.828 183.311 190.516 196.915 198.846 204.53 209.824 216.358 221.019

P

DF 0.995 0.975 0.2 0.1 0.05 0.025 0.02 0.01 0.005 0.002 0.001

161 118.536 127.761 175.875 184.382 191.608 198.025 199.961 205.66 210.968 217.518 222.191

162 119.392 128.651 176.922 185.454 192.7 199.134 201.076 206.79 212.111 218.678 223.363

163 120.249 129.543 177.969 186.525 193.791 200.243 202.19 207.919 213.254 219.838 224.535

164 121.107 130.434 179.016 187.596 194.883 201.351 203.303 209.047 214.396 220.997 225.705

165 121.965 131.326 180.062 188.667 195.973 202.459 204.417 210.176 215.539 222.156 226.876

166 122.823 132.218 181.109 189.737 197.064 203.567 205.53 211.304 216.68 223.314 228.045

167 123.682 133.111 182.155 190.808 198.154 204.675 206.642 212.431 217.821 224.472 229.215

168 124.541 134.003 183.201 191.878 199.244 205.782 207.755 213.558 218.962 225.629 230.383

169 125.401 134.897 184.247 192.948 200.334 206.889 208.867 214.685 220.102 226.786 231.552

170 126.261 135.79 185.293 194.017 201.423 207.995 209.978 215.812 221.242 227.942 232.719

171 127.122 136.684 186.338 195.087 202.513 209.102 211.09 216.938 222.382 229.098 233.887

172 127.983 137.578 187.384 196.156 203.602 210.208 212.201 218.063 223.521 230.253 235.053

173 128.844 138.472 188.429 197.225 204.69 211.313 213.311 219.189 224.66 231.408 236.22

174 129.706 139.367 189.475 198.294 205.779 212.419 214.422 220.314 225.798 232.563 237.385

175 130.568 140.262 190.52 199.363 206.867 213.524 215.532 221.438 226.936 233.717 238.551

176 131.43 141.157 191.565 200.432 207.955 214.628 216.641 222.563 228.074 234.87 239.716

177 132.293 142.053 192.61 201.5 209.042 215.733 217.751 223.687 229.211 236.023 240.88

178 133.157 142.949 193.654 202.568 210.13 216.837 218.86 224.81 230.347 237.176 242.044
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179 134.02 143.845 194.699 203.636 211.217 217.941 219.969 225.933 231.484 238.328 243.207

180 134.884 144.741 195.743 204.704 212.304 219.044 221.077 227.056 232.62 239.48 244.37

181 135.749 145.638 196.788 205.771 213.391 220.148 222.185 228.179 233.755 240.632 245.533

182 136.614 146.535 197.832 206.839 214.477 221.251 223.293 229.301 234.891 241.783 246.695

183 137.479 147.432 198.876 207.906 215.563 222.353 224.401 230.423 236.026 242.933 247.857

184 138.344 148.33 199.92 208.973 216.649 223.456 225.508 231.544 237.16 244.084 249.018

185 139.21 149.228 200.964 210.04 217.735 224.558 226.615 232.665 238.294 245.234 250.179

186 140.077 150.126 202.008 211.106 218.82 225.66 227.722 233.786 239.428 246.383 251.339

187 140.943 151.024 203.052 212.173 219.906 226.761 228.828 234.907 240.561 247.532 252.499

188 141.81 151.923 204.095 213.239 220.991 227.863 229.935 236.027 241.694 248.681 253.659

189 142.678 152.822 205.139 214.305 222.076 228.964 231.04 237.147 242.827 249.829 254.818

190 143.545 153.721 206.182 215.371 223.16 230.064 232.146 238.266 243.959 250.977 255.976

191 144.413 154.621 207.225 216.437 224.245 231.165 233.251 239.386 245.091 252.124 257.135

192 145.282 155.521 208.268 217.502 225.329 232.265 234.356 240.505 246.223 253.271 258.292

193 146.15 156.421 209.311 218.568 226.413 233.365 235.461 241.623 247.354 254.418 259.45

194 147.02 157.321 210.354 219.633 227.496 234.465 236.566 242.742 248.485 255.564 260.607

195 147.889 158.221 211.397 220.698 228.58 235.564 237.67 243.86 249.616 256.71 261.763

196 148.759 159.122 212.439 221.763 229.663 236.664 238.774 244.977 250.746 257.855 262.92

197 149.629 160.023 213.482 222.828 230.746 237.763 239.877 246.095 251.876 259.001 264.075

198 150.499 160.925 214.524 223.892 231.829 238.861 240.981 247.212 253.006 260.145 265.231

199 151.37 161.826 215.567 224.957 232.912 239.96 242.084 248.329 254.135 261.29 266.386

200 152.241 162.728 216.609 226.021 233.994 241.058 243.187 249.445 255.264 262.434 267.541

P

DF 0.995 0.975 0.2 0.1 0.05 0.025 0.02 0.01 0.005 0.002 0.001

201 153.112 163.63 217.651 227.085 235.077 242.156 244.29 250.561 256.393 263.578 268.695

202 153.984 164.532 218.693 228.149 236.159 243.254 245.392 251.677 257.521 264.721 269.849

203 154.856 165.435 219.735 229.213 237.24 244.351 246.494 252.793 258.649 265.864 271.002

204 155.728 166.338 220.777 230.276 238.322 245.448 247.596 253.908 259.777 267.007 272.155

205 156.601 167.241 221.818 231.34 239.403 246.545 248.698 255.023 260.904 268.149 273.308

206 157.474 168.144 222.86 232.403 240.485 247.642 249.799 256.138 262.031 269.291 274.46

207 158.347 169.047 223.901 233.466 241.566 248.739 250.9 257.253 263.158 270.432 275.612

208 159.221 169.951 224.943 234.529 242.647 249.835 252.001 258.367 264.285 271.574 276.764

209 160.095 170.855 225.984 235.592 243.727 250.931 253.102 259.481 265.411 272.715 277.915

210 160.969 171.759 227.025 236.655 244.808 252.027 254.202 260.595 266.537 273.855 279.066

211 161.843 172.664 228.066 237.717 245.888 253.122 255.302 261.708 267.662 274.995 280.217

212 162.718 173.568 229.107 238.78 246.968 254.218 256.402 262.821 268.788 276.135 281.367

213 163.593 174.473 230.148 239.842 248.048 255.313 257.502 263.934 269.912 277.275 282.517

214 164.469 175.378 231.189 240.904 249.128 256.408 258.601 265.047 271.037 278.414 283.666

215 165.344 176.283 232.23 241.966 250.207 257.503 259.701 266.159 272.162 279.553 284.815

216 166.22 177.189 233.27 243.028 251.286 258.597 260.8 267.271 273.286 280.692 285.964

217 167.096 178.095 234.311 244.09 252.365 259.691 261.898 268.383 274.409 281.83 287.112

218 167.973 179.001 235.351 245.151 253.444 260.785 262.997 269.495 275.533 282.968 288.261
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219 168.85 179.907 236.391 246.213 254.523 261.879 264.095 270.606 276.656 284.106 289.408

220 169.727 180.813 237.432 247.274 255.602 262.973 265.193 271.717 277.779 285.243 290.556

221 170.604 181.72 238.472 248.335 256.68 264.066 266.291 272.828 278.902 286.38 291.703

222 171.482 182.627 239.512 249.396 257.758 265.159 267.389 273.939 280.024 287.517 292.85

223 172.36 183.534 240.552 250.457 258.837 266.252 268.486 275.049 281.146 288.653 293.996

224 173.238 184.441 241.592 251.517 259.914 267.345 269.584 276.159 282.268 289.789 295.142

225 174.116 185.348 242.631 252.578 260.992 268.438 270.681 277.269 283.39 290.925 296.288

226 174.995 186.256 243.671 253.638 262.07 269.53 271.777 278.379 284.511 292.061 297.433

227 175.874 187.164 244.711 254.699 263.147 270.622 272.874 279.488 285.632 293.196 298.579

228 176.753 188.072 245.75 255.759 264.224 271.714 273.97 280.597 286.753 294.331 299.723

229 177.633 188.98 246.79 256.819 265.301 272.806 275.066 281.706 287.874 295.465 300.868

230 178.512 189.889 247.829 257.879 266.378 273.898 276.162 282.814 288.994 296.6 302.012

231 179.392 190.797 248.868 258.939 267.455 274.989 277.258 283.923 290.114 297.734 303.156

232 180.273 191.706 249.908 259.998 268.531 276.08 278.354 285.031 291.234 298.867 304.299

233 181.153 192.615 250.947 261.058 269.608 277.171 279.449 286.139 292.353 300.001 305.443

234 182.034 193.524 251.986 262.117 270.684 278.262 280.544 287.247 293.472 301.134 306.586

235 182.915 194.434 253.025 263.176 271.76 279.352 281.639 288.354 294.591 302.267 307.728

236 183.796 195.343 254.063 264.235 272.836 280.443 282.734 289.461 295.71 303.4 308.871

237 184.678 196.253 255.102 265.294 273.911 281.533 283.828 290.568 296.828 304.532 310.013

238 185.56 197.163 256.141 266.353 274.987 282.623 284.922 291.675 297.947 305.664 311.154

239 186.442 198.073 257.179 267.412 276.062 283.713 286.016 292.782 299.065 306.796 312.296

240 187.324 198.984 258.218 268.471 277.138 284.802 287.11 293.888 300.182 307.927 313.437

P

DF 0.995 0.975 0.2 0.1 0.05 0.025 0.02 0.01 0.005 0.002 0.001

241 188.207 199.894 259.256 269.529 278.213 285.892 288.204 294.994 301.3 309.058 314.578

242 189.09 200.805 260.295 270.588 279.288 286.981 289.298 296.1 302.417 310.189 315.718

243 189.973 201.716 261.333 271.646 280.362 288.07 290.391 297.206 303.534 311.32 316.859

244 190.856 202.627 262.371 272.704 281.437 289.159 291.484 298.311 304.651 312.45 317.999

245 191.739 203.539 263.409 273.762 282.511 290.248 292.577 299.417 305.767 313.58 319.138

246 192.623 204.45 264.447 274.82 283.586 291.336 293.67 300.522 306.883 314.71 320.278

247 193.507 205.362 265.485 275.878 284.66 292.425 294.762 301.626 307.999 315.84 321.417

248 194.391 206.274 266.523 276.935 285.734 293.513 295.855 302.731 309.115 316.969 322.556

249 195.276 207.186 267.561 277.993 286.808 294.601 296.947 303.835 310.231 318.098 323.694

250 196.161 208.098 268.599 279.05 287.882 295.689 298.039 304.94 311.346 319.227 324.832

300 240.663 253.912 320.397 331.789 341.395 349.874 352.425 359.906 366.844 375.369 381.425

350 285.608 300.064 372.051 384.306 394.626 403.723 406.457 414.474 421.9 431.017 437.488

400 330.903 346.482 423.59 436.649 447.632 457.305 460.211 468.724 476.606 486.274 493.132

450 376.483 393.118 475.035 488.849 500.456 510.67 513.736 522.717 531.026 541.212 548.432

500 422.303 439.936 526.401 540.93 553.127 563.852 567.07 576.493 585.207 595.882 603.446

550 468.328 486.91 577.701 592.909 605.667 616.878 620.241 630.084 639.183 650.324 658.215

600 514.529 534.019 628.943 644.8 658.094 669.769 673.27 683.516 692.982 704.568 712.771
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650 560.885 581.245 680.134 696.614 710.421 722.542 726.176 736.807 746.625 758.639 767.141

700 607.38 628.577 731.28 748.359 762.661 775.211 778.972 789.974 800.131 812.556 821.347

750 653.997 676.003 782.386 800.043 814.822 827.785 831.67 843.029 853.514 866.336 875.404

800 700.725 723.513 833.456 851.671 866.911 880.275 884.279 895.984 906.786 919.991 929.329

850 747.554 771.099 884.492 903.249 918.937 932.689 936.808 948.848 959.957 973.534 983.133

900 794.475 818.756 935.499 954.782 970.904 985.032 989.263 1001.63 1013.036 1026.974 1036.826

950 841.48 866.477 986.478 1006.272 1022.816 1037.311 1041.651 1054.334 1066.031 1080.32 1090.418

1000 888.564 914.257 1037.431 1057.724 1074.679 1089.531 1093.977 1106.969 1118.948 1133.579 1143.917

F Distribution critical values for P=0.10

Denom 
DF

Numerator DF

1 2 3 4 5 7 10 15 20 30 60 120 500

1 39.864 49.5 53.593 55.833 57.24 58.906 60.195 61.22 61.74 62.265 62.794 63.061 63.264

2 8.5264 8.9999 9.1618 9.2434 9.2926 9.3491 9.3915 9.4248 9.4413 9.458 9.4745 9.4829 9.4893

3 5.5384 5.4624 5.3907 5.3426 5.3092 5.2661 5.2304 5.2003 5.1845 5.1681 5.1513 5.1425 5.1358

4 4.5448 4.3245 4.1909 4.1073 4.0505 3.979 3.9198 3.8704 3.8443 3.8175 3.7896 3.7753 3.7643

5 4.0605 3.7798 3.6194 3.5202 3.453 3.3679 3.2974 3.2379 3.2067 3.174 3.1402 3.1228 3.1094

7 3.5895 3.2575 3.074 2.9605 2.8833 2.785 2.7025 2.6322 2.5947 2.5555 2.5142 2.4927 2.4761

10 3.285 2.9244 2.7277 2.6054 2.5216 2.4139 2.3226 2.2434 2.2007 2.1554 2.1071 2.0818 2.0618

15 3.0731 2.6951 2.4898 2.3615 2.2729 2.1582 2.0593 1.9722 1.9243 1.8727 1.8168 1.7867 1.7629

20 2.9746 2.5893 2.3801 2.249 2.1582 2.0397 1.9368 1.845 1.7939 1.7383 1.6768 1.6432 1.6163

30 2.8808 2.4887 2.2761 2.1423 2.0493 1.9269 1.8195 1.7222 1.6674 1.6064 1.5376 1.499 1.4669

60 2.7911 2.3932 2.1774 2.0409 1.9457 1.8194 1.707 1.6034 1.5435 1.4756 1.3953 1.3476 1.306

120 2.7478 2.3473 2.13 1.9924 1.8959 1.7675 1.6523 1.545 1.4821 1.4094 1.3203 1.2646 1.2123

500 2.7157 2.3132 2.0947 1.9561 1.8588 1.7288 1.6115 1.5009 1.4354 1.3583 1.26 1.1937 1.1215

F Distribution critical values for P=0.05

Denom 
DF

Numerator DF

1 2 3 4 5 7 10 15 20 30 60 120 500

1 161.45 199.5 215.71 224.58 230.16 236.77 241.88 245.95 248.01 250.1 252.2 253.25 254.06

2 18.513 19 19.164 19.247 19.296 19.353 19.396 19.429 19.446 19.462 19.479 19.487 19.494

3 10.128 9.5522 9.2766 9.1172 9.0135 8.8867 8.7855 8.7028 8.6602 8.6165 8.572 8.5493 8.532

4 7.7086 6.9443 6.5915 6.3882 6.256 6.0942 5.9644 5.8579 5.8026 5.7458 5.6877 5.658 5.6352

5 6.6078 5.7862 5.4095 5.1922 5.0504 4.8759 4.7351 4.6187 4.5582 4.4958 4.4314 4.3985 4.3731

7 5.5914 4.7375 4.3469 4.1202 3.9715 3.7871 3.6366 3.5108 3.4445 3.3758 3.3043 3.2675 3.2388

10 4.9645 4.1028 3.7082 3.478 3.3259 3.1354 2.9782 2.845 2.7741 2.6996 2.621 2.5801 2.5482

15 4.5431 3.6823 3.2874 3.0556 2.9013 2.7066 2.5437 2.4035 2.3275 2.2467 2.1601 2.1141 2.0776

20 4.3512 3.4928 3.0983 2.866 2.7109 2.514 2.3479 2.2032 2.1241 2.0391 1.9463 1.8962 1.8563

30 4.1709 3.3159 2.9223 2.6896 2.5336 2.3343 2.1646 2.0149 1.9317 1.8408 1.7396 1.6835 1.6376

60 4.0012 3.1505 2.7581 2.5252 2.3683 2.1666 1.9927 1.8365 1.748 1.6492 1.5343 1.4672 1.4093

120 3.9201 3.0718 2.6802 2.4473 2.2898 2.0868 1.9104 1.7505 1.6587 1.5544 1.4289 1.3519 1.2804

500 3.8601 3.0137 2.6227 2.3898 2.232 2.0278 1.8496 1.6864 1.5917 1.482 1.3455 1.2552 1.1586
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F Distribution critical values for P=0.02

Denom 

DF

Numerator DF

1 2 3 4 5 7 10 15 20 30 60 120 500

1 1012.5 1249.5 1350.5 1405.8 1440.6 1481.8 1513.7 1539.1 1551.9 1564.9 1578 1584.6 1589.6

2 48.505 49 49.166 49.249 49.299 49.356 49.398 49.432 49.448 49.465 49.482 49.49 49.496

3 20.618 18.858 18.11 17.694 17.429 17.11 16.86 16.657 16.553 16.448 16.34 16.286 16.244

4 14.04 12.142 11.344 10.899 10.616 10.274 10.003 9.7828 9.6696 9.554 9.4359 9.376 9.33

5 11.323 9.4544 8.6702 8.233 7.953 7.6137 7.3438 7.1234 7.0094 6.8926 6.7728 6.7119 6.6649

7 8.9877 7.2026 6.4539 6.0347 5.7647 5.4354 5.1711 4.9531 4.8392 4.722 4.6007 4.5384 4.4902

10 7.6384 5.9336 5.2182 4.8157 4.5549 4.2347 3.975 3.758 3.6437 3.5245 3.3999 3.3354 3.285

15 6.773 5.1355 4.4475 4.0584 3.8052 3.4917 3.2345 3.0168 2.9003 2.7775 2.6468 2.578 2.5237

20 6.3907 4.7875 4.1134 3.7312 3.4817 3.1713 2.9149 2.6955 2.5771 2.4509 2.3148 2.2421 2.1841

30 6.0382 4.4695 3.8093 3.4339 3.1877 2.8803 2.6239 2.402 2.2805 2.1493 2.0047 1.9255 1.8611

60 5.7127 4.1785 3.5319 3.1633 2.9207 2.6157 2.3586 2.1326 2.0067 1.8676 1.7085 1.6169 1.5383

120 5.5594 4.0423 3.4026 3.0372 2.7963 2.4923 2.2347 2.0059 1.8769 1.7322 1.5613 1.4577 1.3629

500 5.4467 3.9428 3.3083 2.9453 2.7057 2.4024 2.1441 1.9128 1.7809 1.6307 1.4468 1.3273 1.2019

F Distribution critical values for P=0.01

Denom 
DF

Numerator DF

1 2 3 4 5 7 10 15 20 30 60 120 500

1 4052.2 4999.5 5403.4 5624.6 5763.6 5928.4 6055.8 6157.3 6208.7 6260.6 6313 6339.4 6359.5

2 98.503 99 99.166 99.249 99.299 99.356 99.399 99.433 99.449 99.466 99.482 99.491 99.497

3 34.116 30.817 29.457 28.71 28.237 27.672 27.229 26.872 26.69 26.504 26.316 26.221 26.148

4 21.198 18 16.694 15.977 15.522 14.976 14.546 14.198 14.02 13.838 13.652 13.558 13.486

5 16.258 13.274 12.06 11.392 10.967 10.455 10.051 9.7222 9.5526 9.3793 9.202 9.1118 9.0424

7 12.246 9.5467 8.4513 7.8466 7.4605 6.9929 6.6201 6.3143 6.1554 5.992 5.8236 5.7373 5.6707

10 10.044 7.5594 6.5523 5.9944 5.6363 5.2001 4.8492 4.5582 4.4055 4.2469 4.0818 3.9964 3.9303

15 8.6831 6.3588 5.4169 4.8932 4.5557 4.1416 3.8049 3.5223 3.3719 3.2141 3.0471 2.9594 2.8906

20 8.096 5.8489 4.9382 4.4306 4.1027 3.6987 3.3682 3.088 2.9377 2.7785 2.6078 2.5167 2.4446

30 7.5624 5.3903 4.5098 4.0179 3.699 3.3046 2.9791 2.7002 2.5486 2.3859 2.2078 2.1108 2.0321

60 7.0771 4.9774 4.1259 3.6491 3.3388 2.953 2.6318 2.3522 2.1978 2.0284 1.8362 1.7264 1.6328

120 6.8509 4.7865 3.949 3.4795 3.1736 2.7918 2.472 2.1914 2.0345 1.86 1.6557 1.533 1.4215

500 6.6858 4.6479 3.821 3.3569 3.0539 2.6751 2.3564 2.0746 1.9152 1.7353 1.5175 1.3774 1.2317

F Distribution critical values for P=0.005

Denom 
DF

Numerator DF

1 2 3 4 5 7 10 15 20 30 60 120 500

1 16211 19999 21615 22500 23056 23715 24224 24630 24836 25044 25253 25359 25439

2 198.5 199 199.17 199.25 199.3 199.36 199.4 199.43 199.45 199.47 199.48 199.49 199.5

3 55.552 49.799 47.467 46.195 45.392 44.434 43.686 43.085 42.777 42.466 42.149 41.989 41.867

4 31.333 26.284 24.259 23.155 22.456 21.622 20.967 20.438 20.167 19.891 19.611 19.468 19.359
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5 22.785 18.314 16.53 15.556 14.94 14.2 13.618 13.146 12.903 12.656 12.402 12.274 12.175

7 16.235 12.404 10.882 10.05 9.5221 8.8853 8.3803 7.9677 7.7539 7.5345 7.3088 7.1933 7.1044

10 12.826 9.427 8.0807 7.3428 6.8723 6.3025 5.8467 5.4706 5.274 5.0705 4.8592 4.7501 4.6656

15 10.798 7.7007 6.476 5.8029 5.3721 4.8473 4.4235 4.0697 3.8826 3.6868 3.4802 3.3722 3.2874

20 9.9439 6.9865 5.8176 5.1744 4.7616 4.2569 3.847 3.502 3.3178 3.1234 2.9159 2.8058 2.7186

30 9.1796 6.3547 5.2387 4.6233 4.2275 3.7416 3.3439 3.0058 2.8231 2.6277 2.4151 2.2998 2.2066

60 8.4946 5.795 4.729 4.1399 3.7599 3.2911 2.9042 2.5705 2.3872 2.1874 1.9621 1.8341 1.7256

120 8.1789 5.5393 4.4972 3.9207 3.5482 3.0874 2.7052 2.3728 2.1882 1.984 1.7468 1.6055 1.4778

500 7.9498 5.3548 4.3304 3.7632 3.3963 2.9414 2.5625 2.2303 2.0441 1.8352 1.5844 1.4245 1.2595

F Distribution critical values for P=0.001

Denom 
DF

Numerator DF

1 2 3 4 5 7 10 15 20 30 60 120 500

1 405284 499999 540379 562500 576405 592873 605621 615764 620908 626099 631337 633972 635983

2 998.5 999 999.17 999.25 999.3 999.36 999.4 999.43 999.45 999.47 999.48 999.49 999.5

3 167.03 148.5 141.11 137.1 134.58 131.58 129.25 127.37 126.42 125.45 124.47 123.97 123.59

4 74.137 61.245 56.177 53.436 51.712 49.658 48.053 46.761 46.1 45.429 44.746 44.4 44.135

5 47.181 37.122 33.202 31.085 29.752 28.163 26.917 25.911 25.395 24.869 24.333 24.061 23.852

7 29.245 21.689 18.772 17.198 16.206 15.019 14.083 13.324 12.932 12.53 12.119 11.909 11.747

10 21.04 14.905 12.553 11.283 10.481 9.5174 8.7539 8.1288 7.8038 7.4688 7.1224 6.9443 6.8065

15 16.587 11.339 9.3352 8.2526 7.5673 6.7408 6.0808 5.5351 5.2484 4.9502 4.6378 4.4749 4.3478

20 14.819 9.9526 8.0984 7.096 6.4606 5.692 5.0753 4.5618 4.29 4.0051 3.703 3.5439 3.4184

30 13.293 8.7734 7.0544 6.1245 5.5339 4.8173 4.2389 3.7528 3.4928 3.2171 2.9197 2.7595 2.631

60 11.973 7.7678 6.1712 5.3067 4.7565 4.0864 3.5415 3.0781 2.8265 2.5549 2.2522 2.0821 1.939

120 11.38 7.3212 5.7814 4.9471 4.4157 3.7669 3.2372 2.7833 2.5345 2.2621 1.9502 1.7668 1.6027

500 10.957 7.0041 5.5056 4.6935 4.1757 3.5424 3.0234 2.5759 2.3282 2.0538 1.7292 1.526 1.3191

DW (α=5%)

n k=1 k=2 k=3 k=4 k=5

dL dU dL dU dL dU dL dU dL dU

6 0.6102 1.4002

7 0.6996 1.3564 0.4672 1.8964

8 0.7629 1.3324 0.5591 1.7771 0.3674 2.2866

9 0.8243 1.3199 0.6291 1.6993 0.4548 2.1282 0.2957 2.5881

10 0.8791 1.3197 0.6972 1.6413 0.5253 2.0163 0.3760 2.4137 0.2427 2.8217

11 0.9273 1.3241 0.7580 1.6044 0.5948 1.9280 0.4441 2.2833 0.3155 2.6446

12 0.9708 1.3314 0.8122 1.5794 0.6577 1.8640 0.5120 2.1766 0.3796 2.5061

13 1.0097 1.3404 0.8612 1.5621 0.7147 1.8159 0.5745 2.0943 0.4445 2.3897

14 1.0450 1.3503 0.9054 1.5507 0.7667 1.7788 0.6321 2.0296 0.5052 2.2959

15 1.0770 1.3605 0.9455 1.5432 0.8140 1.7501 0.6852 1.9774 0.5620 2.2198

16 1.1062 1.3709 0.9820 1.5386 0.8572 1.7277 0.7340 1.9351 0.6150 2.1567

17 1.1330 1.3812 1.0154 1.5361 0.8968 1.7101 0.7790 1.9005 0.6641 2.1041
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18 1.1576 1.3913 1.0461 1.5353 0.9331 1.6961 0.8204 1.8719 0.7098 2.0600

19 1.1804 1.4012 1.0743 1.5355 0.9666 1.6851 0.8588 1.8482 0.7523 2.0226

20 1.2015 1.4107 1.1004 1.5367 0.9976 1.6763 0.8943 1.8283 0.7918 1.9908

21 1.2212 1.4200 1.1246 1.5385 1.0262 1.6694 0.9272 1.8116 0.8286 1.9635

22 1.2395 1.4289 1.1471 1.5408 1.0529 1.6640 0.9578 1.7974 0.8629 1.9400

23 1.2567 1.4375 1.1682 1.5435 1.0778 1.6597 0.9864 1.7855 0.8949 1.9196

24 1.2728 1.4458 1.1878 1.5464 1.1010 1.6565 1.0131 1.7753 0.9249 1.9018

25 1.2879 1.4537 1.2063 1.5495 1.1228 1.6540 1.0381 1.7666 0.9530 1.8863

26 1.3022 1.4614 1.2236 1.5528 1.1432 1.6523 1.0616 1.7591 0.9794 1.8727

27 1.3157 1.4688 1.2399 1.5562 1.1624 1.6510 1.0836 1.7527 1.0042 1.8608

28 1.3284 1.4759 1.2553 1.5596 1.1805 1.6503 1.1044 1.7473 1.0276 1.8502

29 1.3405 1.4828 1.2699 1.5631 1.1976 1.6499 1.1241 1.7426 1.0497 1.8409

30 1.3520 1.4894 1.2837 1.5666 1.2138 1.6498 1.1426 1.7386 1.0706 1.8326

31 1.3630 1.4957 1.2969 1.5701 1.2292 1.6500 1.1602 1.7352 1.0904 1.8252

32 1.3734 1.5019 1.3093 1.5736 1.2437 1.6505 1.1769 1.7323 1.1092 1.8187

33 1.3834 1.5078 1.3212 1.5770 1.2576 1.6511 1.1927 1.7298 1.1270 1.8128

34 1.3929 1.5136 1.3325 1.5805 1.2707 1.6519 1.2078 1.7277 1.1439 1.8076

35 1.4019 1.5191 1.3433 1.5838 1.2833 1.6528 1.2221 1.7259 1.1601 1.8029

36 1.4107 1.5245 1.3537 1.5872 1.2953 1.6539 1.2358 1.7245 1.1755 1.7987

37 1.4190 1.5297 1.3635 1.5904 1.3068 1.6550 1.2489 1.7233 1.1901 1.7950

38 1.4270 1.5348 1.3730 1.5937 1.3177 1.6563 1.2614 1.7223 1.2042 1.7916

39 1.4347 1.5396 1.3821 1.5969 1.3283 1.6575 1.2734 1.7215 1.2176 1.7886

40 1.4421 1.5444 1.3908 1.6000 1.3384 1.6589 1.2848 1.7209 1.2305 1.7859

41 1.4493 1.5490 1.3992 1.6031 1.3480 1.6603 1.2958 1.7205 1.2428 1.7835

42 1.4562 1.5534 1.4073 1.6061 1.3573 1.6617 1.3064 1.7202 1.2546 1.7814

43 1.4628 1.5577 1.4151 1.6091 1.3663 1.6632 1.3166 1.7200 1.2660 1.7794

44 1.4692 1.5619 1.4226 1.6120 1.3749 1.6647 1.3263 1.7200 1.2769 1.7777

45 1.4754 1.5660 1.4298 1.6148 1.3832 1.6662 1.3357 1.7200 1.2874 1.7762

46 1.4814 1.5700 1.4368 1.6176 1.3912 1.6677 1.3448 1.7201 1.2976 1.7748

47 1.4872 1.5739 1.4435 1.6204 1.3989 1.6692 1.3535 1.7203 1.3073 1.7736

48 1.4928 1.5776 1.4500 1.6231 1.4064 1.6708 1.3619 1.7206 1.3167 1.7725

49 1.4982 1.5813 1.4564 1.6257 1.4136 1.6723 1.3701 1.7210 1.3258 1.7716

50 1.5035 1.5849 1.4625 1.6283 1.4206 1.6739 1.3779 1.7214 1.3346 1.7708

51 1.5086 1.5884 1.4684 1.6309 1.4273 1.6754 1.3855 1.7218 1.3431 1.7701

52 1.5135 1.5917 1.4741 1.6334 1.4339 1.6769 1.3929 1.7223 1.3512 1.7694

53 1.5183 1.5951 1.4797 1.6359 1.4402 1.6785 1.4000 1.7228 1.3592 1.7689

54 1.5230 1.5983 1.4851 1.6383 1.4464 1.6800 1.4069 1.7234 1.3669 1.7684

55 1.5276 1.6014 1.4903 1.6406 1.4523 1.6815 1.4136 1.7240 1.3743 1.7681

56 1.5320 1.6045 1.4954 1.6430 1.4581 1.6830 1.4201 1.7246 1.3815 1.7678

57 1.5363 1.6075 1.5004 1.6452 1.4637 1.6845 1.4264 1.7253 1.3885 1.7675

58 1.5405 1.6105 1.5052 1.6475 1.4692 1.6860 1.4325 1.7259 1.3953 1.7673
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59 1.5446 1.6134 1.5099 1.6497 1.4745 1.6875 1.4385 1.7266 1.4019 1.7672

60 1.5485 1.6162 1.5144 1.6518 1.4797 1.6889 1.4443 1.7274 1.4083 1.7671

61 1.5524 1.6189 1.5189 1.6540 1.4847 1.6904 1.4499 1.7281 1.4146 1.7671

62 1.5562 1.6216 1.5232 1.6561 1.4896 1.6918 1.4554 1.7288 1.4206 1.7671

63 1.5599 1.6243 1.5274 1.6581 1.4943 1.6932 1.4607 1.7296 1.4265 1.7671

64 1.5635 1.6268 1.5315 1.6601 1.4990 1.6946 1.4659 1.7303 1.4322 1.7672

65 1.5670 1.6294 1.5355 1.6621 1.5035 1.6960 1.4709 1.7311 1.4378 1.7673

66 1.5704 1.6318 1.5395 1.6640 1.5079 1.6974 1.4758 1.7319 1.4433 1.7675

67 1.5738 1.6343 1.5433 1.6660 1.5122 1.6988 1.4806 1.7327 1.4486 1.7676

68 1.5771 1.6367 1.5470 1.6678 1.5164 1.7001 1.4853 1.7335 1.4537 1.7678

69 1.5803 1.6390 1.5507 1.6697 1.5205 1.7015 1.4899 1.7343 1.4588 1.7680

70 1.5834 1.6413 1.5542 1.6715 1.5245 1.7028 1.4943 1.7351 1.4637 1.7683

71 1.5865 1.6435 1.5577 1.6733 1.5284 1.7041 1.4987 1.7358 1.4685 1.7685

72 1.5895 1.6457 1.5611 1.6751 1.5323 1.7054 1.5029 1.7366 1.4732 1.7688

73 1.5924 1.6479 1.5645 1.6768 1.5360 1.7067 1.5071 1.7375 1.4778 1.7691

74 1.5953 1.6500 1.5677 1.6785 1.5397 1.7079 1.5112 1.7383 1.4822 1.7694

75 1.5981 1.6521 1.5709 1.6802 1.5432 1.7092 1.5151 1.7390 1.4866 1.7698

76 1.6009 1.6541 1.5740 1.6819 1.5467 1.7104 1.5190 1.7399 1.4909 1.7701

77 1.6036 1.6561 1.5771 1.6835 1.5502 1.7117 1.5228 1.7407 1.4950 1.7704

78 1.6063 1.6581 1.5801 1.6851 1.5535 1.7129 1.5265 1.7415 1.4991 1.7708

79 1.6089 1.6601 1.5830 1.6867 1.5568 1.7141 1.5302 1.7423 1.5031 1.7712

80 1.6114 1.6620 1.5859 1.6882 1.5600 1.7153 1.5337 1.7430 1.5070 1.7716

81 1.6139 1.6639 1.5888 1.6898 1.5632 1.7164 1.5372 1.7438 1.5109 1.7720

82 1.6164 1.6657 1.5915 1.6913 1.5663 1.7176 1.5406 1.7446 1.5146 1.7724

83 1.6188 1.6675 1.5942 1.6928 1.5693 1.7187 1.5440 1.7454 1.5183 1.7728

84 1.6212 1.6693 1.5969 1.6942 1.5723 1.7199 1.5472 1.7462 1.5219 1.7732

85 1.6235 1.6711 1.5995 1.6957 1.5752 1.7210 1.5505 1.7470 1.5254 1.7736

86 1.6258 1.6728 1.6021 1.6971 1.5780 1.7221 1.5536 1.7478 1.5289 1.7740

87 1.6280 1.6745 1.6046 1.6985 1.5808 1.7232 1.5567 1.7485 1.5322 1.7745

88 1.6302 1.6762 1.6071 1.6999 1.5836 1.7243 1.5597 1.7493 1.5356 1.7749

89 1.6324 1.6778 1.6095 1.7013 1.5863 1.7254 1.5627 1.7501 1.5388 1.7754

90 1.6345 1.6794 1.6119 1.7026 1.5889 1.7264 1.5656 1.7508 1.5420 1.7758

91 1.6366 1.6810 1.6143 1.7040 1.5915 1.7275 1.5685 1.7516 1.5452 1.7763

92 1.6387 1.6826 1.6166 1.7053 1.5941 1.7285 1.5713 1.7523 1.5482 1.7767

93 1.6407 1.6841 1.6188 1.7066 1.5966 1.7295 1.5741 1.7531 1.5513 1.7772

94 1.6427 1.6857 1.6211 1.7078 1.5991 1.7306 1.5768 1.7538 1.5542 1.7776

95 1.6447 1.6872 1.6233 1.7091 1.6015 1.7316 1.5795 1.7546 1.5572 1.7781

96 1.6466 1.6887 1.6254 1.7103 1.6039 1.7326 1.5821 1.7553 1.5600 1.7785

97 1.6485 1.6901 1.6275 1.7116 1.6063 1.7335 1.5847 1.7560 1.5628 1.7790

98 1.6504 1.6916 1.6296 1.7128 1.6086 1.7345 1.5872 1.7567 1.5656 1.7795

99 1.6522 1.6930 1.6317 1.7140 1.6108 1.7355 1.5897 1.7575 1.5683 1.7799
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100 1.6540 1.6944 1.6337 1.7152 1.6131 1.7364 1.5922 1.7582 1.5710 1.7804

101 1.6558 1.6958 1.6357 1.7163 1.6153 1.7374 1.5946 1.7589 1.5736 1.7809

102 1.6576 1.6971 1.6376 1.7175 1.6174 1.7383 1.5969 1.7596 1.5762 1.7813

103 1.6593 1.6985 1.6396 1.7186 1.6196 1.7392 1.5993 1.7603 1.5788 1.7818

104 1.6610 1.6998 1.6415 1.7198 1.6217 1.7402 1.6016 1.7610 1.5813 1.7823

105 1.6627 1.7011 1.6433 1.7209 1.6237 1.7411 1.6038 1.7617 1.5837 1.7827

106 1.6644 1.7024 1.6452 1.7220 1.6258 1.7420 1.6061 1.7624 1.5861 1.7832

107 1.6660 1.7037 1.6470 1.7231 1.6277 1.7428 1.6083 1.7631 1.5885 1.7837

108 1.6676 1.7050 1.6488 1.7241 1.6297 1.7437 1.6104 1.7637 1.5909 1.7841

109 1.6692 1.7062 1.6505 1.7252 1.6317 1.7446 1.6125 1.7644 1.5932 1.7846

110 1.6708 1.7074 1.6523 1.7262 1.6336 1.7455 1.6146 1.7651 1.5955 1.7851

111 1.6723 1.7086 1.6540 1.7273 1.6355 1.7463 1.6167 1.7657 1.5977 1.7855

112 1.6738 1.7098 1.6557 1.7283 1.6373 1.7472 1.6187 1.7664 1.5999 1.7860

113 1.6753 1.7110 1.6574 1.7293 1.6391 1.7480 1.6207 1.7670 1.6021 1.7864

114 1.6768 1.7122 1.6590 1.7303 1.6410 1.7488 1.6227 1.7677 1.6042 1.7869

115 1.6783 1.7133 1.6606 1.7313 1.6427 1.7496 1.6246 1.7683 1.6063 1.7874

116 1.6797 1.7145 1.6622 1.7323 1.6445 1.7504 1.6265 1.7690 1.6084 1.7878

117 1.6812 1.7156 1.6638 1.7332 1.6462 1.7512 1.6284 1.7696 1.6105 1.7883

118 1.6826 1.7167 1.6653 1.7342 1.6479 1.7520 1.6303 1.7702 1.6125 1.7887

119 1.6839 1.7178 1.6669 1.7352 1.6496 1.7528 1.6321 1.7709 1.6145 1.7892

120 1.6853 1.7189 1.6684 1.7361 1.6513 1.7536 1.6339 1.7715 1.6164 1.7896

121 1.6867 1.7200 1.6699 1.7370 1.6529 1.7544 1.6357 1.7721 1.6184 1.7901

122 1.6880 1.7210 1.6714 1.7379 1.6545 1.7552 1.6375 1.7727 1.6203 1.7905

123 1.6893 1.7221 1.6728 1.7388 1.6561 1.7559 1.6392 1.7733 1.6222 1.7910

124 1.6906 1.7231 1.6743 1.7397 1.6577 1.7567 1.6409 1.7739 1.6240 1.7914

125 1.6919 1.7241 1.6757 1.7406 1.6592 1.7574 1.6426 1.7745 1.6258 1.7919

126 1.6932 1.7252 1.6771 1.7415 1.6608 1.7582 1.6443 1.7751 1.6276 1.7923

127 1.6944 1.7261 1.6785 1.7424 1.6623 1.7589 1.6460 1.7757 1.6294 1.7928

128 1.6957 1.7271 1.6798 1.7432 1.6638 1.7596 1.6476 1.7763 1.6312 1.7932

129 1.6969 1.7281 1.6812 1.7441 1.6653 1.7603 1.6492 1.7769 1.6329 1.7937

130 1.6981 1.7291 1.6825 1.7449 1.6667 1.7610 1.6508 1.7774 1.6346 1.7941

131 1.6993 1.7301 1.6838 1.7458 1.6682 1.7617 1.6523 1.7780 1.6363 1.7945

132 1.7005 1.7310 1.6851 1.7466 1.6696 1.7624 1.6539 1.7786 1.6380 1.7950

133 1.7017 1.7319 1.6864 1.7474 1.6710 1.7631 1.6554 1.7791 1.6397 1.7954

134 1.7028 1.7329 1.6877 1.7482 1.6724 1.7638 1.6569 1.7797 1.6413 1.7958

135 1.7040 1.7338 1.6889 1.7490 1.6738 1.7645 1.6584 1.7802 1.6429 1.7962

136 1.7051 1.7347 1.6902 1.7498 1.6751 1.7652 1.6599 1.7808 1.6445 1.7967

137 1.7062 1.7356 1.6914 1.7506 1.6765 1.7659 1.6613 1.7813 1.6461 1.7971

138 1.7073 1.7365 1.6926 1.7514 1.6778 1.7665 1.6628 1.7819 1.6476 1.7975

139 1.7084 1.7374 1.6938 1.7521 1.6791 1.7672 1.6642 1.7824 1.6491 1.7979

140 1.7095 1.7382 1.6950 1.7529 1.6804 1.7678 1.6656 1.7830 1.6507 1.7984
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141 1.7106 1.7391 1.6962 1.7537 1.6817 1.7685 1.6670 1.7835 1.6522 1.7988

142 1.7116 1.7400 1.6974 1.7544 1.6829 1.7691 1.6684 1.7840 1.6536 1.7992

143 1.7127 1.7408 1.6985 1.7552 1.6842 1.7697 1.6697 1.7846 1.6551 1.7996

144 1.7137 1.7417 1.6996 1.7559 1.6854 1.7704 1.6710 1.7851 1.6565 1.8000

145 1.7147 1.7425 1.7008 1.7566 1.6866 1.7710 1.6724 1.7856 1.6580 1.8004

146 1.7157 1.7433 1.7019 1.7574 1.6878 1.7716 1.6737 1.7861 1.6594 1.8008

147 1.7167 1.7441 1.7030 1.7581 1.6890 1.7722 1.6750 1.7866 1.6608 1.8012

148 1.7177 1.7449 1.7041 1.7588 1.6902 1.7729 1.6762 1.7871 1.6622 1.8016

149 1.7187 1.7457 1.7051 1.7595 1.6914 1.7735 1.6775 1.7876 1.6635 1.8020

150 1.7197 1.7465 1.7062 1.7602 1.6926 1.7741 1.6788 1.7881 1.6649 1.8024

151 1.7207 1.7473 1.7072 1.7609 1.6937 1.7747 1.6800 1.7886 1.6662 1.8028

152 1.7216 1.7481 1.7083 1.7616 1.6948 1.7752 1.6812 1.7891 1.6675 1.8032

153 1.7226 1.7488 1.7093 1.7622 1.6959 1.7758 1.6824 1.7896 1.6688 1.8036

154 1.7235 1.7496 1.7103 1.7629 1.6971 1.7764 1.6836 1.7901 1.6701 1.8040

155 1.7244 1.7504 1.7114 1.7636 1.6982 1.7770 1.6848 1.7906 1.6714 1.8044

156 1.7253 1.7511 1.7123 1.7642 1.6992 1.7776 1.6860 1.7911 1.6727 1.8048

157 1.7262 1.7519 1.7133 1.7649 1.7003 1.7781 1.6872 1.7915 1.6739 1.8052

158 1.7271 1.7526 1.7143 1.7656 1.7014 1.7787 1.6883 1.7920 1.6751 1.8055

159 1.7280 1.7533 1.7153 1.7662 1.7024 1.7792 1.6895 1.7925 1.6764 1.8059

160 1.7289 1.7541 1.7163 1.7668 1.7035 1.7798 1.6906 1.7930 1.6776 1.8063

161 1.7298 1.7548 1.7172 1.7675 1.7045 1.7804 1.6917 1.7934 1.6788 1.8067

162 1.7306 1.7555 1.7182 1.7681 1.7055 1.7809 1.6928 1.7939 1.6800 1.8070

163 1.7315 1.7562 1.7191 1.7687 1.7066 1.7814 1.6939 1.7943 1.6811 1.8074

164 1.7324 1.7569 1.7200 1.7693 1.7075 1.7820 1.6950 1.7948 1.6823 1.8078

165 1.7332 1.7576 1.7209 1.7700 1.7085 1.7825 1.6960 1.7953 1.6834 1.8082

166 1.7340 1.7582 1.7218 1.7706 1.7095 1.7831 1.6971 1.7957 1.6846 1.8085

167 1.7348 1.7589 1.7227 1.7712 1.7105 1.7836 1.6982 1.7961 1.6857 1.8089

168 1.7357 1.7596 1.7236 1.7718 1.7115 1.7841 1.6992 1.7966 1.6868 1.8092

169 1.7365 1.7603 1.7245 1.7724 1.7124 1.7846 1.7002 1.7970 1.6879 1.8096

170 1.7373 1.7609 1.7254 1.7730 1.7134 1.7851 1.7012 1.7975 1.6890 1.8100

171 1.7381 1.7616 1.7262 1.7735 1.7143 1.7856 1.7023 1.7979 1.6901 1.8103

172 1.7389 1.7622 1.7271 1.7741 1.7152 1.7861 1.7033 1.7983 1.6912 1.8107

173 1.7396 1.7629 1.7279 1.7747 1.7162 1.7866 1.7042 1.7988 1.6922 1.8110

174 1.7404 1.7635 1.7288 1.7753 1.7171 1.7872 1.7052 1.7992 1.6933 1.8114

175 1.7412 1.7642 1.7296 1.7758 1.7180 1.7877 1.7062 1.7996 1.6943 1.8117

176 1.7420 1.7648 1.7305 1.7764 1.7189 1.7881 1.7072 1.8000 1.6954 1.8121

177 1.7427 1.7654 1.7313 1.7769 1.7197 1.7886 1.7081 1.8005 1.6964 1.8124

178 1.7435 1.7660 1.7321 1.7775 1.7206 1.7891 1.7091 1.8009 1.6974 1.8128

179 1.7442 1.7667 1.7329 1.7780 1.7215 1.7896 1.7100 1.8013 1.6984 1.8131

180 1.7449 1.7673 1.7337 1.7786 1.7224 1.7901 1.7109 1.8017 1.6994 1.8135

181 1.7457 1.7679 1.7345 1.7791 1.7232 1.7906 1.7118 1.8021 1.7004 1.8138
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182 1.7464 1.7685 1.7353 1.7797 1.7241 1.7910 1.7128 1.8025 1.7014 1.8141

183 1.7471 1.7691 1.7360 1.7802 1.7249 1.7915 1.7137 1.8029 1.7023 1.8145

184 1.7478 1.7697 1.7368 1.7807 1.7257 1.7920 1.7146 1.8033 1.7033 1.8148

185 1.7485 1.7702 1.7376 1.7813 1.7266 1.7924 1.7155 1.8037 1.7042 1.8151

186 1.7492 1.7708 1.7384 1.7818 1.7274 1.7929 1.7163 1.8041 1.7052 1.8155

187 1.7499 1.7714 1.7391 1.7823 1.7282 1.7933 1.7172 1.8045 1.7061 1.8158

188 1.7506 1.7720 1.7398 1.7828 1.7290 1.7938 1.7181 1.8049 1.7070 1.8161

189 1.7513 1.7725 1.7406 1.7833 1.7298 1.7942 1.7189 1.8053 1.7080 1.8165

190 1.7520 1.7731 1.7413 1.7838 1.7306 1.7947 1.7198 1.8057 1.7089 1.8168

191 1.7526 1.7737 1.7420 1.7843 1.7314 1.7951 1.7206 1.8061 1.7098 1.8171

192 1.7533 1.7742 1.7428 1.7848 1.7322 1.7956 1.7215 1.8064 1.7107 1.8174

193 1.7540 1.7748 1.7435 1.7853 1.7329 1.7960 1.7223 1.8068 1.7116 1.8178

194 1.7546 1.7753 1.7442 1.7858 1.7337 1.7965 1.7231 1.8072 1.7124 1.8181

195 1.7553 1.7759 1.7449 1.7863 1.7345 1.7969 1.7239 1.8076 1.7133 1.8184

196 1.7559 1.7764 1.7456 1.7868 1.7352 1.7973 1.7247 1.8079 1.7142 1.8187

197 1.7566 1.7769 1.7463 1.7873 1.7360 1.7977 1.7255 1.8083 1.7150 1.8190

198 1.7572 1.7775 1.7470 1.7878 1.7367 1.7982 1.7263 1.8087 1.7159 1.8193

199 1.7578 1.7780 1.7477 1.7882 1.7374 1.7986 1.7271 1.8091 1.7167 1.8196

200 1.7584 1.7785 1.7483 1.7887 1.7382 1.7990 1.7279 1.8094 1.7176 1.8199
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