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UNIT - I

Lesson 1.1 - Preliminaries

Structure

1.1.1   Objective

1.1.2   Introduction

1.1.3   Propositions

1.1.4   Connectives

1,1.5   Biconditional Proposition

1.1.6   Satisfiability or Satisfaction

1.1.7   Construction of Truth Tables

1.1.8   Mathematical Induction

1.1.9   Set and Set Operations

1.1.10 Functions

1.1.11 Numbers

1.1.12   Self-Assessment Question

1.1.13   Summary

1.1.1 Objectives

  ➢  Interpret and explain the converse and contra-positive statements 
in mathematical contexts.

  ➢ Analyze and determine necessary and sufficient conditions in 
 mathematical arguments.

  ➢  Explain the principles and steps involved in mathematical induction.

  ➢ Define sets and understand set operations.

  ➢ Describe the concept of functions and their role in mathematics.

  ➢ Explain composite functions and their properties.

  ➢ Define inverse functions and their relationship to original functions.

  ➢ Define and differentiate various types of numbers.
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1.1.2 Introduction

 Logic is the discipline that deals with the methods of reasoning. One 
of the aims of logic is to provide rules by which we can determine whether 
particular reasoning or argument is valid. Logical reasoning is used in many 
disciplines to establish valid results. Rule of logic are used to provide proofs of 
theorems in mathematics, to verify the correctness of computer programs and 
to draw conclusions from scientific experiments.

1.1.3 Propositions

 A declarative sentence (or assertion) which is either true or false 
but not both, is called a proposition (or statement). Sentences which are 
exclamatory, interrogative or imperative in nature are not propositions. 
Lower case letters such as p, q, r . . . are used to denote propositions. For 
example, we consider the following sentences:

1.  Chennai is the capital of Tamil Nādu.

2.  How beautiful is Rose?

3.   2+2=4

4.  What time is it?

     5 x+y=z
 In the given statements, (2) and (4) are obviously not propositions 
as they are not declarative in nature. (l) and (3) are propositions, but (5) 
is not, since (1) is true,(3) is true and (5) is neither true nor false as the 
values of x, y, and z are not assigned.

 If a proposition is true, we say that the truth value of that proposition 
is true, denoted by T or 1. If a proposition is false, the truth value is said to 
be false, denoted by F or 0.

Syntax

 In Propositional logic there are two types of sentences- Simple 
sentences and compound sentences. Simple sentences express simple facts 
about the world. Compound sentences express logical relationships between 
the simple sentences of which they are composed.

 Note that the constituent sentences within any compound sentence 
can be either simple sentences or compound sentences or a mixture of the 
two.

DDE, P
on

dic
he

rry
 U

niv
ers

ity



Notes

3

Definition: Atomic Statement

 Propositions which do not contain any of the logical operators or 
connectives are called atomic (primary or primitive) propositions. The area of 
logic that deals with propositions is called propositional logic or propositional 
calculus.

 Simple sentences in Propositional Logic are often called proposition 
constants or, sometimes, logical constants. We write proposition constants as 
strings of letter, digits, and underscores (“_”), where the first character is a 
lower-case letter.

For example:

 Raining is a proposition constant, as are rAiNiNg, r32aining, and 
raining_or_snowing. Raining is not a proposition constant because it begins 
with an upper Case character.324567 fails because it begins with a number.
Raining-or-snowing fails because it contains hyphens (instead of underscores).

Definition: Molecular Statement

 Mathematical statements which can be constructed by combining 
one or more atomic statements using connectives are called molecular or 
compound propositions. There are five types of compound sentences, viz. 
negations, conjunctions, disjunctions, implications, and biconditionals.
 The following table gives a hierarchy of precedence for our operators. 
The ¬ operator has higher precedence than ; has higher precedence than 
V; V has higher precedence than

⇒; and ⇒ has higher precedence than ⇔.
¬ - Negations
∧ - Conjunctions
∨ - Disjunctions
⇒ - Implications
⇔ Biconditionals

1.1.4 Connectives 

Definition-Conjunction

When p and q are any two propositions, the proposition conjunction of p 
and q is defined as the compound proposition that is true when both p and 
q are true and is false otherwise.
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 The side table is the truth table for the conjunction of two 
propositions p and q viz., "p and q”.

Definition-Disjunction

When p and q are any two propositions, the propositions "p or q" denoted 
by p ∨ q and called the disjunction of p and q is defined as the compound 
proposition that is false when both p and q are false and are true otherwise.
The side table is the truth table for the disjunction of two propositions p 
and q, viz p ∨ q

Definition-Negation

Given any proposition p, another proposition formed by writing "It is not 
the case that" or "It is false that" before p or by inserting the word 'not' 
suitably in p is called the negation of p and denoted by ~p (read as 'not p'). 
~p is also denoted ¬P. It p is true, then ~p is false and if p is false, 
then ~p is true. Above table is the truth table for the negation of p.
For example, if p is the statement "New Delhi is in India", 
then ¬P is given by
¬P: Itis not the case that New Delhi is in India.

Conditional Statement: [If… ......... then]

Let p and q be any two statements. Then the statement

p → q is called a conditional statement (read as if p then q). 
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p → q has a truth value F if p has the truth value T and q has the truth value 
F. In all the remaining cases it has the truth value T.

P q p  q

T T T

T F F

F T T

F F T

Example:

p: Ram is a Computer Science student q: Ram studies Data Structure

p → q :  If Ram is a Computer Science student, then he will study Data 
Structure.

The different situations where the conditional statements are applied are 
listed below.

a) If p then q

b) p only if q

c) q whenever p

d) q is necessary for p

e) q follows from p

f) q when p

g) p is sufficient for q

h) p implies q

Definition: Converse, Contrapositive & Inverse Statements

If p q→  is a conditional statement, then
a.  q p→  is called the converse of p q→

b. q p¬ → ¬ is called the contrapositive of p q→

c. p q¬ → ¬ is called the inverse of  p q→

Example: Write the contrapositive, the converse, and the inverse of the 
implication “The home team wins whenever it is raining”.

Solution: Let p: It is raining and q: The home team wins

Conditional Statement p q→ : If it is raining then the home team wins.
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Contra positive q p¬ → ¬  : If the home team does not win then it is not 
raining.
Converse (  q p→ ): If the home team wins then it is raining.
Inverse ( p q¬ → ¬ ): If it is not raining then the home team does not win.

1.1.5 Biconditional Proposition

If p and q are two propositions, then the proposition p if and only if q, 
denoted by p ↔ q is called the biconditional statement and is defined by 
the following truth table.
Note: p↔q is True if both p and q have the same truth values. Otherwise, 
p↔q is False.

p q p↔q
T T T
T F F
F T F
F F T

Example:

p: You can take the flight q: You can buy a ticket
p↔q: You can take the flight if and only if you buy a ticket

Semantics

 Artificial symbolic language is called formal language, in which 
symbols are used to form formulas and formulas serve to express 
propositions.

Semantics is concerned with the meaning of expressions when the 
symbols are interpreted in a certain way. Interpretation of the propositional 
language and to make the formulas express propositions is semantics. 
Formulas are composed of atoms (proposition symbols) and connectives. 
Atoms are intended to express simple propositions.

 The connectives have their intended meanings: negation, 
conjunction, disjunction, implication, and equivalence expression, 
respectively,”not”, “and”, ”or”, ”if then” and “Iff ”. Hence, if formulas A and B 
express propositions A and B respectively, then the following non-atomic 
formulas on the left express the corresponding compound propositions on 
the right:
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¬ A Not A

A ∧  B A and B

A ∨ B A or B

A →  B If A then B

A ↔ B A Iff B

Syntax, on the other hand, is concerned with the formal structure of 
expressions, irrespective of any interpretation.

Symbolize the Statements using Logical Connectives Examples:

1. The automated reply can be sent when the file system is full.
 p:The automated reply can be sent, q: The file system is full
 Solution: Symbolic form: q →  p
2.  Write the symbolized form of the statement. If either Ram takes  

C ++or Kumar takes Pascal, then Latha will take Lotus.
 R: Ram takes C ++ K: Kumar takes Pascal L: Latha takes Lotus
 Solution: Symbolic form: (R ∨ K) →  L
3. Let p, q, r represents the following propositions,
 p: It is raining, q: The sun is shining, r: There are clouds in the sky

Symbolize the following statements.

a. If it is raining, then there are clouds in the sky
b.  If it is not raining, then the sun is not shining and there are clouds  

 in the sky.
c. The sun is shining if and only if it is not raining.

Solution:

a) p → r 
b) p →  (¬q ∧  r) 
c) q ↔ ¬r

4. Symbolize the following statements:
(i)     If the moon is out and it is not snowing, then Ram goes out for 

a walk.
(ii)     If the moon is out, then if it is not snowing, Ram goes out for a 

walk.
(iii)     It is not the case that Ram goes out for a walk if and only if it is 

not snowing or the moon is out.
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Solution: Let the propositions be,

        p: The moon is out.
        q: It is snowing.
r: Ram goes out for a walk. Symbolic form:

(i) (p ∧ ¬q) → r
(ii) p →  (¬q → r) 
(iii) ¬(r ↔ (¬q ∨ p))

Truth Assignment

A truth assignment for Propositional Logic is a mapping that assigns a 
truth value to each of the proposition constants in the language. A truth 
assignment satisfies a sentence if and only if the sentences is true under 
that truth assignment according to rules defining the logical operators of 
the language.

Evaluation

Evaluation is the process of determining the truth values of a complex 
sentence, given a truth assignment for the truth values of proposition 
constants in that sentence.

1.1.6 Satisfiability or Satisfaction

Satisfaction is the process of determining whether or not a sentence has 
truth assignment that satisfies it.

Problem

Consider a truth assignment in which p is true, q is false, r is true. Use this 
truth assignment to evaluate the following sentences.

(a)  p ⇒ q ∧  r
(b)  p ⇒ q ∨ r
(c)  p ∧  q ⇒ r
(d)  p ∧  q ⇒ ¬r
(e)  p ∧  q ⇔ q ∧  r

Solution

(a)  False
(b)  True
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(c)  True
(d)  True
(e)  True

1.1.7 Construction of Truth Tables

Problems:

1.  Show that the truth values of the formula p ∧  (p → q) → q are 
independent  of their components.

Solution: The truth table for the formula is

p Q p → q p ∧ (p → q) (p ∧ (p → q)) → q)

T T T T T

T F F F T
F T T F T

F F T F T

The Truth values of the given formula are all true for every possible 
Truth value of p and q. Therefore, the Truth value of the given formula is 
independent of their components.

2.  Show that the Truth value of (p → q) ↔ (¬p ∨  q) is independent of 
their components.

Solution:

The Truth values of the given formula are all true for every possible 
truth value of p and q. Therefore, the Truth value of the given formula is 
independent of their components.DDE, P
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3. Construct a truth table for (q ∧ ((p → q)) → p

Solution:

4. Construct a TRUTH table for ⌐ (p∨ (q∧r)) ↔ ((p∨ q) ∧ (p ∨ r))

Solution:

Exercise 

Construct the table for each of the following compound propositions:

1. ( ¬ p ∧  ( ¬ q ∧  r)) ∨  (q ∧  r) ∨  ( p ∧  r)

2. ( p →  q) ∧  (q →  r) →  ( p →  r)

3. (( p ∨  q) ∧  (( p → r) ∧  (q →  r)) →  r

4. (p ↔  q) ∨  ( ¬ q ↔  r)

Introduction to proofs:

Proof: A proof is a valid argument that establishes the truth of a 
mathematical statement.

Theorem: A theorem is a statement that can be shown to be true
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1. Direct Proofs: A direct proof shows that a conditional statement
 𝑝 → 𝑞 is true by showing that if 𝑝 is true then 𝑞 must also be true

2. Proof by contraposition (or) Proof by contra positive(or) indirect 
proof:

 In proof by contraposition of 𝑝 → 𝑞 we take q¬ as a hypothesis and 
using axioms, definition together with rules of reference show that p¬  
must  follow

3. Vacuous Proof

 To show that 𝑝 is false that proof is called vacuous proof of the 
conditional statement.

 4. Trivial Proof: A proof of 𝑝 → 𝑞 that uses the fact 𝑞 is true is called a  
trivial proof.

 5. Proof by contradiction:

  In proof by contradiction of 𝑝 → 𝑞 assume ¬𝑞 → ¬𝑝 to show that ¬𝑝 
is true

 6. Proofs of equivalence:

  To prove a theorem that is biconditional statement, that is a statement 
of the form 𝑝 ↔ 𝑞 we show that 𝑝 → 𝑞 and 𝑞 → 𝑝 are both true

 7. Counter examples:

  A statement of the form ∀x P(x) is false we need only find a counter 
example,that is an example x for which P(x) is false.

Problems

1. Prove that √ 2 is irrational by giving a proof by contradiction

 Solution: P : √ 2 is irrational

 To start a proof by contradiction (ie) ¬p is true (ie) √ 2 is rational

 Now we have to show that ¬p is true leads to a contradiction

 If √ 2 is rational there exist integers 'a' and ' b' the √ 2 = 
a
b →  (1)

 where a and b do not have common factor 

 Now 2 = ( a
b)2

 squaring (1)

 2b2 = a2 which gives a2 is even

 a2 is even implies a is even then a = 2c

 2b2 = (2c)2 = 4c2 ⟹ b2 = 2c2 that means b2 is even
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 Again using the fact that if the square of an integer is even then the integer 
must be even ∴b is even 

2 = 
a
b

'a' and 'b' have common number ‘2’ which gives the contradiction to (1)

∴  our assumption √ 2 is rational is wrong. Hence √ 2 is irrational

2. Prove that if n is a positive integer, then n is odd if and only if 5n + 6  
is odd.

 Solution: Case i: Assume n is odd.

 Let n = 2k + 1 where k is a positive integer

 ∴  5n + 6 = 5(2k + 1) + 6

                 = 10k + 11 = 2(5k + 5) + 1 which is an odd number.

 Hence if n is odd then 5n + 6 is odd

 Case ii: To prove the converse

 Let n be even. i.e n = 2k where k is a positive integer.

 Then 5n + 6 = 5(2k) + 6 = 2 (5k + 3) which is always even.

 Thus 5n + 6 is odd if and only if n is odd.

3. Prove that square of an even number is an even number by (i) direct  
 method (ii) indirect method and (iii) proof by contradiction

 Solution:

 Direct proof: (p  q) :

 Let n be even i.e. n = 2k, where k is an integer.

                             n2 = (2k) 2 = 4k2 = 2 (2k2) = an even number.

 Indirect proof: ( ¬ q → ¬ p)

 To prove that if n is odd then n2 is odd

 Let n be odd. i.e. n = 2k – 1

                         ∴n2 = (2k – 1)2 = 4k2 – 4k + 1

                                 = 2(2k2 – 2k) + 1 = odd number

 Hence if n is odd then n2 is odd. Or if n is even then n2 is even.

 Proof by contradiction:
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 Let q be F then if ¬ p → ¬ q is T implies ¬ p is F or p is T.

 Assume n2 to be even when n is odd. But if n is even we have proved 
that n2 is even by the indirect method. Hence if n2 is even then n is 
even and our assumption that n2 is even when n is odd is wrong. So, if 
n is even then n2 is even.

4. Prove that proposition P(0), where P(n) is the proposition “If n is a  
positive integer greater than 1, then n2 > n". What kind of proof you  
use.

 Solution: Proposition P(0) is the implication “If 0 > 1, then 02 > 0”. 

 Since the hypothesis 0 > 1 is false, the implication P(0) is automatically 
true. We have used Vacuous Proof to the above problem.

5. Let P(n) be “If a and b are positive integers with a ≥ b, then an ≥ bn. 
Show that the proposition P(0) is true

 Solution: Proposition P(0) is the implication “If a ≥ b, then a0 ≥ b0

 Since a0 = b0 = 1, the conclusion of P(0) is true. Hence P(0) is true 
(using trivial proof).

Exercise

1. Prove that if n is a positive integer then n is odd if and only if 6n + 5 
is odd.

2. Prove that square of an odd number is an odd number by

 (i) direct method (ii) indirect method and (iii) proof by contradiction.

3. Prove that √3 is irrational by giving a proof by contradiction.

1.1.8 Mathematical Induction:

 One of the most basic methods of proof is Mathematical Induction, 
which is a method to establish the truth of a statement Induction, about 
all natural numbers. It will often help us to prove a general mathematical 
statement involving positive integers when a certain instance of that 
statement suggests a general pattern.

Statement of the Principle of Mathematical Induction:

Let P(n) be a statement or proposition involving the natural number ‘n’.
We must go through two steps to prove that the statement P(n) is true for 
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all natural numbers.
Step 1: We must prove that P (1) is true.

Step 2: By assuming P (k) is true, we must prove that P (k + l) is also true.

Note:

The condition (i) is known as the Basic step and the condition (ii) is 
known as Inductive step
Problems:

1. Show that by mathematical induction 1+2+3+4+…...n = 
1

( 1)
2

n

i

n ni
=

+=∑
 Solution: BASIS STEP: To prove P (1) is true.

 Since 11(1 1)
2

=
+

 INDUCTIVE STEP: Assume that the result is true for P(K) 

1

( 1)
( )

2
( 1)

1 2 3 .... ( 1) ( 1)
2
( 1) 2( 1)

2
( 1)( 2)

( 1)
2

k

i

k k
p k i

k k
k k k

k k k

k k
p k

= =

+
+ + + + + + = + +

+ + +
=

+ +
+ =

∑

 Hence the result is derived using Mathematical induction method.

2. For all n ≥ 1, prove that 1²+2²+3²+4²+……. +n²= ( ) ( )1  2 1
6

n n n+ +

 Solution: Let the given statement be P(n)

 P(n): 1²+2²+3²+4²+……+n²= ( ) ( )1  2 1
6

n n n+ +
For n=1,

 (i)   To prove P (1) is true.

 P (1) = ( ) ( )1 1 1  2 1 1
6

+ × +
 = 1 which is true.

 ∴ .P(n) is true. Where n = 1

 (ii)  Assume that P(k) is true for some positive integer k, i.e.,
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 1²+2²+3²+4²+……...+k²= ( ) ( )1  2 1
6

k k k+ +
  --------- (1)

 We shall now prove that P(k+1) is also true. Now we have,

 (1²+2²+3²+4²+……. +k²) + (k+1) = ( ) ( )1  2 1
6

k k k+ +
 + (k+1)² 

(Using (1))

 = ( ) ( ) ( )1  2 1  6 1  ²
6

k k k k+ + + +

 = 
( ) ( ) ( )1 2 1 6 1

6
k k k k+ + + +  

 = 
2( 1)(2 7 6)
6

k k k+ + +

         Thus P(k+1) is true, wherever P(k) is true. Hence, from the 
principle of mathematical induction, the statement is true for all-
natural number n.

3. Show that n3 +2n is divisible by 3.

 Solution: Let P(n): n3+2n is divisible by 3

 (i) To prove P (1) is true.

  P (1): 13 +2.1=3 is divisible by 3 is true.    --------- (1)

 (ii) Assume

  P(k): k3+2k is divisible by 3

  Claim: P(k+1)

  Now, P(k+1): (k+1)3+2(k+1)

   =k3 +3k2 +3k+1+2k+2

  =k3 +3k2 +3k+2k+3

  =(k3+2k) +3(k2+k+1) -------- (2)

   Since by Induction step (using (l)) k3 + 2k is divisible by 3 and 
3(k2+k + l) 

  is a multiple of 3, we have equation (2) is divisible by 3.

  ∴P (k + l) is true.

   By the principle of Mathematical induction, n3 + 2n is divisible by 3
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4. Prove that 8n – 3n is a multiple of 5.

 Solution: Let P(n): 8n – 3n is a multiple of 5.

 (i)  To prove :P (1) is true.P (1) = 81 – 31 = 5 is a multiple of 5 which is  
 true.

 (ii) Assume P (k) = 8k – 3k is a multiple of 5 is true.

  i.e., 8k – 3k = 5m where m∈  Z+

  =>8k = 5m+3k   --------- (1)

  Claim: P (k+1) is true.

  Now, P(k+1) = 8k+1 – 3k+1

      =8k8 – 3k3

      =(5m +3k).8 – 3k.3 (Using (1))

      =5.8m + 8.3k – 3.3k

      =5.8m + 5.3k = 5 (8m + 3k)

  Which is a multiple of 5 for all ‘m’.

  ∴P (k + 1) is true.

  Hence, 8n — 3n is a multiple of 5 for all n.

5.  Using mathematical induction prove that (3n+7n–2) is divisible by 8, 
for n ≥ 1

 Solution: Let P(n): (3n+7n–2) is a multiple of 8.

 (1) To prove P (1) is true.

  P (1) = (31+71–2) ≡8 which is divisible by 8 is true.

 (2) Assume P (k) = (3k+7k–2) is divisible by 8 is true.  ---- (1)

  Claim: P (k+1) is true.

  Now, P (k+1) =3k+1 + 7k+1 – 2

   =3k.3 + 7k.7 – 2

   =3(3k + 7k – 2) + 4(7k + 1) ----- (2)

  Now, 7k+1 is an even number, for k ≥  1.

   ∴4 (7k + l) is divisible by 8.

   Since 3 (3k+7k–2) is divisible by 8 (Using (l)) and 4 (7k+ l) is  
divisible by 8, the RHS of (2) is divisible by 8.
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  ∴P (k + l) is true.

  Hence, P(n): (3n+7n–2) is a multiple of 8.

6. Show that an–bn is divisible by (a–b).

 Solution: Let P(n): an–bn is divisible by (a–b).

 (i) To prove P (1) is true 

  P (1) = a1–b1 is divisible by (a–b) is true.

 (ii) Assume P (k) = ak–bk is divisible by (a–b) is true. -------- (1)

  Claim: P (k+1) is true.

  Now, P (k+1) = ak+1–bk+1

   =ak.a–bk.b

   =[m (a–b) +bk] a–bk.b

   =am (a–b) +abk–bbk

   =(a–b) ma+ (a–b) bk

   =(a–b) [ma +bk]

  Which is a multiple of (a–b).

  ∴  P (k+1) is true.

  Hence, P(n): an-bn is divisible by (a–b).

7. Show that 2n<n! for all n ≥  4.

 Solution: Let P(n): 2ⁿ<n!

 (i) To prove p (1) is true. Since n ≥  4.

  P (4): 24< 4! is true

 (ii) Assume P (k): 2k<k! is true.  -------- (1)

  Claim: P (k+1) is true whenever P(k) is true.

  From (1) 2k<k!

  Multiplying both sides of (1) by 2, 

  We get 2.2k< 2.k!

  i.e.,      2k+¹< (k+1) k!

                    = (k+1)!

              2k+k<k+1!

  ∴  P (k+1) is true when P (k) is true. 

DDE, P
on

dic
he

rry
 U

niv
ers

ity



Notes

18

  Hence, P(n): 2ⁿ<n! is true for all n ≥  4.

8. Using mathematical induction, Prove that 2+22+23+…. +2n=2n+1–2 

 Solution: Let P(n): 2+22+23+…. +2n

 (i) To prove p(1) is true

  P (1): 21=21+1–2 is true.

 (ii) Assume P(k): 2+22+23+…. +2k=2k+1–2 is true. -------- (1)

  Claim: P(k+1) is true.

  P(k+1): 2+22+23+…. +2k+2k+1

                =2k+1–2 +2k+1 ….(Using(1))

                =2. 2k+1–2

                =2k+2–2

  ∴P(k+1) is true.

  Hence, 2+22+23+…. +2n=2n+1–2 is true for all n.

9. Show that 1 1 1....
1.2 2.3 ( 1) 1

n
n n n

+ + + =
+ +

 .

 Solution: Let P(n): 1 1 1....
1.2 2.3 ( 1)n n

+ + +
+

 (i) To prove p(1) is true

  P (1): 
1

1.2
= 1

1.(1 1)+
is true.

 (ii) Assume P(k): 
1 1 1....

1.2 2.3 ( 1)k k
+ + +

+

                         =
( 1)

k
k +

  Claim: P(k+1) is true.
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2

1 1 1 1( 1) ....
1.2 2.3 ( 1) ( 1)( 2)

1
( 1) ( 1)( 2)

( 2) 1
( 1)( 2)

( 1)( 2)
1
2

P k
k k k k

k
k k k
k k
k k

k
k k
k
k

+ = + + + +
+ + +

= +
+ + +

+ +
=

+ +

=
+ +
+

=
+ 

  ∴P(k+1) is true.

  Hence, 
1 1 1....

1.2 2.3 ( 1) 1
n

n n n
+ + + =

+ +
 is true for all n.

10. For all n ≥ 1, prove that 1²+2²+3²+4²+…….+n²= 
( )( )1 2 1

6
n n n+ +

 Solution: Let the given statement be P(n).

 P(n):1²+2²+3²+4²+……+n²= 
( )( )1 2 1

6
n n n+ +

 (i) To prove p(1) is true For n=1,

  P(1)=
( )( )1 1 1 2 1 1

6
+ × +

 = (1 2 3)
6

× ×  =1 which is true

  therefore, P(n) is true. Where n = 1

 (ii) Assume that P(k) is true for some positive integer k ,i.e.,

  1²+2²+3²+4²+……..+k²=
( )( )1 2 1

6
k k k+ +

  …………..(1)

  We shall now prove that P(k+1) is also true. 

  Now we have,

   (1²+2²+3²+4²+……..+k²)+(k+1)²=
( )( )1 2 1

6
k k k+ +

+(k+1)²  
(Using (1))

  = 
( ) ( ) ( )1 2 1 6 1

6
k k k k+ + + +  

  = 
2( 1)(2 7 6)
6

k k k+ + +

  = 
( )( ) ( ){ }1 1 1 2 1 1

6
k k k+ + + + +
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   Thus P(k+1) is true, wherever P(k) is true. Hence, from the 
principle of mathematical induction, the statement is true for all 
natural number n.

11. Show that 1+3+5+………. + (2n–1) =n2

 Solution:

 (i) To prove P (1) is true

  P (1) =1=12 is true

 (ii) Assume that P(k) is true for some positive integer n=k

   1+3+5+…..+(2k–1)=k2 is true

  Now, to prove for “k+1”

   1+3+5+…..+(2k–1)+(2(k+1)–1)=(k+1)2

  We know that 1+3+5+… +(2k–1) = K2 so,

  1+3+5+…..+(2k–1)+(2(k+1)–1=K2+(2(k+1)–1)

  Expanding =k2+2k+2–1

    =k2+2k+1

   =(k+1)2

  They are same! So, it is true.

12. Prove the following by using the principle of mathematical induction 

for all n∊N 1.2.3+2.3.4+……..+n (n+1) (n+2) =
( )( )( )1 2 3

4
n n n n+ + +

 Solution: Let the given statement be P(n)

 P(n)=1.2.3+2.3.4+………..+n(n+1)(n+2)= 
( )( )( )1 2 3

4
n n n n+ + +

 (i) To prove P (1) is true

   For n=1, P(1)=> 1.2.3= 
( )( )( )1 1 1 1 2 1 3

4
+ + +

≡6 = 24/4=6 which is  
true. 

  Therefore, P(n) is true, where n=1

 (i) Assume that P(k) is true for some positive integer k

  P(k) =1.2.3+2.3.4+………+k(k+1) (k+2) 

   = 
( )( )( )1 2 3

4
k k k k+ + +

  …………..(1)
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  We shall now prove that P(k+1) is also true

  P(k+1)  =1.2.3+2.3.4+………..+ (k+1)(k+1+1)(k+1+2)

   = 1.2.3+2.3.4+………..+ (k+1) (k+2) (k+3)  (Using (1))

   = k (k+1) (k+2) (k+3) + 4 

   = 
( )( )( )1 2 3 ( 4)

4
k k k k+ + + +

  Thus P(k+1) is true, whenever P(k) is true

   Hence, from the principle of mathematical induction, the 
statement P(n) is true for all natural numbers n.

13. Show that if n ≥  1, then 1.1!+2.2!+3.3!+…+n.n!= (n+1)!–1

 Solution: Let P(n): 1.1!+2.2!+3.3!+…+n.n!=(n+1)!–1

 (i) To prove p(1) is true

  P(1): 1.1!=(1+1)!–1 is true.

 (ii) Assume (k): 1.1!+2.2!+3.3!+…+k.k! = (k+1)!–1 is true.

  Claim: P(k+1) is true .

  To prove:  1.1!+2.2!+3.3!+…+k.k!+ (k+1)(k+1)!

   = (k+1)! –1+ (k+1)(k+1)! ------- (Using (1)

   = (k+1)! [(1+k+1)]–1

   = (k+1)! (k+2)–1= (k+2)! – 1

   = ((k+1) +1)! - 1

  ∴P(k+1) is true. By mathematical induction we have,

  P(n): 1.1! +2.2! + 3.3! + … +n.n! = (n+1)!–1, n ≥  1.

14.  Use mathematical Induction, Prove that
1 1 1 1.......
1 2 3

n
n

+ + + + >

 for n ≥ 2

 Solution: Let: P(n): 
1 1 1 1.......
1 2 3

n
n

+ + + + >

 (i) Assume P (2): 
1 1
1 2

+ = (1.707)> 2  is true.

 (ii) Assume P(k): 
1 1 1 1.......
1 2 3

k
k

+ + + + >  is true.------(1)

  Claim: P(k+1) is true.
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  i.e., To prove 
1 1 1 1 1....... 1
1 2 3 1

k
k k

+ + + + + > +
+

  Consider, 
1 1 1 1 1.......
1 2 3 1k k

+ + + + +
+

                           

2

1
1

1 1
1

( 1) 1
1

1
1

1
1
1

k
k

k k
k

k k
k

k
k

k
k
k

= +
+

+ +
=

+

+ +
=

+

+
>

+
+

>
+

= +  

(Using(1))

  i.e.., 
1 1 1 1 1....... 1
1 2 3 1

k
k k

+ + + + + > +
+

  ∴P(k+1) is true.

 By mathematical induction we have, P(n): 1 1 1 1.......
1 2 3

n
n

+ + + + >

15. Show that 32n+4n+1 is divisible by 5, for n≥0.

 Solution: Let P(n): 32n+4n+1 is divisible by 5.

 (i) To prove P(1) is true

  Assume P (0): 30+41 is divisible by 5 is true.

 (ii) Assume P(k): 32k+4k+1 is divisible by 5 is true.

  i.e, 32k+4k+1 =5m (m– is integer)

  => 32k= (5m–4k+1) --------- (1)

  Claim: P(k+1) is true.

  i.e, To prove : 32(k+1) +4(k+1) +1 is divisible by 5.

  Consider, 32(k+1) +4(k+1) +1=32k.32+4k+1.4

                   = (5m–4 k+1).32+4 k+1.4 (using 1)

                   =5m.32–4 k+1.32+4 k+1.4
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                   =5m.9–5 x 4 k+1

                   =5(9m–4 k+1)=Multiple of 5

  ∴P (k + l) is true. 

   Therefore, by Mathematical Induction P(n): 32n+4n+1 is divisible 
by 5.

Exercise:

1. Using Mathematical induction, prove that n3+(n+1) 3+(n+2) 3 is 
divisible by 9, for n ≥ 1.

2. Use mathematical Induction, Prove that 
13 13
2

nn
m

m

+ −
=∑

3. For every positive integer n, prove that 7ⁿ– 3ⁿ is divisible by 4

4. Prove that 2ⁿ>n for all positive integers n.

5. Using Mathematical induction, prove that H2
n≥1+

2
n  , where  

Hk=1+ 1 1 1.....
2 3 k

+ + +

1.1.9 Set and Set Operations

Definition:

A set is a well-defined collection of objects, The adjective ‘well-defined’ 
means that element is contained in the set under self-financing engineering 
colleges in a state, and science branch in a college are sets.

Capital letters A, B, C … are generally use Cr … to denote elements. 
If x is an element represented as x ∈ A. Similarly ∣ y ∉ A

Notations:

Usually a set is represented in two ways, namely, (1) roster notation and 
(2) set b notation.

In roster notation, all the elements of the set are listed, if possible, 
separated by commas and enclosed within braces. 

A few examples of sets in roster notation are given as follows:

1 The set of V all vowels in the English alphabet: V = {a,e,i,o,u}

2  The set of E even positive integers less than or equal to 10 :  
E = {2,4,6,8,10}
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3 The set of positive integers less than 

 Note: The order in which a set’s elements are listed is unimportant. 
Thus {1,2,3}, {2,1,3} and {3,2,1} represent the same set. In set 
builder notation, we define the elements of the set by specifying a 
property that they have in common. 

A few examples of sets in set builder notation are given as follows:

1  The set V = {x ∣ x is a vowel in the English alphabet} is the 
same as V ≡{a,e,i,o,u}

2  The set A = {x ∣ x = n2 where n is a positive integer less than 
6} is the same as A = {1,4,9,16,25}

3 The set B = {x ∣ x is an even positive integer not exceeding  
  10} is 

Note: The set V in example (1) is read as “The set of all x such t

The following sets play an important role in discrete math

N = {0,1,2,3,…}, the set of natural numbers

Z = {…, –2,–1,0,1,2, …}, the set of integers

Z+ = {1,2,3, …}, the set of positive integers

Q ≡ { 
p
q  ∣ p ∈ z, q ∈ z, q ≠ 0}, the set of rational numbers

R = the set of real numbers

Property:

If a set S has n elements, then its power set has 2n elements, viz. |P(S)| = 2n

Proof:

Number of subsets of S having no element, i.e., the null sets = 1 or C(n, 0)

Number of subsets of S having 1 element = C(n, 1)

In general, the number of subsets of S having k elements = the number of 
ways choosing k elements from n elements = C(n, k); 0 ≤ k ≤ n. 

Therefore,
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1 2 2

P(s) Total number of subsets of S
( ,0) ( ,1) ( , 2) ..... ( , )..........................................(1)

Now (a+b) ( ,0) ( ,1) ( , 2) .. ( , ) .......(2)
Putting a=b=1in (2),we

n n n n n

C n C n C n C n n
C n a C n a b C n a b C n n b− −

=

= + + + +

= + + + +
 get

( ,0) ( ,1) ( , 2) ..... ( , ) (1 1) 2 ...............................(3)

Using (3) in (1), we get P(s) 2

n n

n

C n C n C n C n n+ + + + = + =

=

Cartesian product:

If A and B are sets, the set of all ordered pairs whose first component belongs 
to second component belongs to B is called the cartesian product of A and 
B and is denoted by A × B. In other words, {( , ) / & }A B a b a A b B× = ∈ ∈

SET OPERATIONS:

(i) The union of two sets A and B, denoted by A ∪ B, is the set of 
elements that belong to A or to B or to both, viz., A ∪ B = x ∣ x ∈ 
A or x ∈ B.

(ii) The intersection of two sets A and B, denoted by A ∩ B, is the set 
of elements that belong to both and . viz., A ∩ B = x ∣ x ∈ A and 
x ∈ B 

(iii) If A and B are any two sets, then the set of elements that belong 
to A but do not belong to B is called the difference of A and B or 
relative  complement of B with respect to A and is denoted by 
A – B or A \ B. viz,, A – B = x ∣ x ∈ A and x B∉

(iv) If U is the universal set and A is any set, then the set of elements  
which belong to U but which do not belong to A is called the  
complement of A and is denoted by A' or Ac or viz., Ac = x ∣ x ∈ U 
and x A∉

(v) If A and B are any two sets, the set of elements that belong to A 
or B, but not to both is called the symmetric difference of A and 
B and is denoted by A ⊕ B or AΔB or A + B. It is obvious that  
A ⊕ B = (A – B) ∪ (B – A)DDE, P
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Problems:

1. Prove that (A – B) ∩ (C – B) = ϕ

Solution: 

( ) ( ) { / and x and and x }

{ / and (x and )and x }

{ / ( and x )and x B}

{ / and x B}

{ / B}
{ / }

A B C B x x A C x C B

x x A C x C B

x x A

x x

x x
x x

φ

φ

φ
φ

φ

− ∩ − = ∈ ∉ ∈ ∉

= ∈ ∈ ∈ ∈

= ∈ ∈ ∈

= ∈ ∈

= ∈ ∩
= ∈
=

2. If A, B and C are sets, then analytically Prove that A – (B ∩ C) = 
(A – B) ∪ (A – C) Proof:

  

{ }

{ } { }
{ }

( ) / ( )
{ / ( }

/ /

/ ( ) ( )
( ) ( )

A B C x x Aand x B C
x x Aand x B x C
x x Aand x B or x x Aand x C

x x A B or x A C
A B A C

− ∩ = ∈ ∉ ∩

= ∈ ∉ ∪ ∉

= ∈ ∉ ∈ ∉

= ∈ − ∈ −

= − ∪ −

3. If A, B and C are sets, then analytically Prove that A ∩ (B – C) = 
(A ∩ B) – (A ∩ C) Proof:

 

{ }

( ) { \ and ( ) }
{ \ and & }
{ \ and ( and )}
{ \ ( }

( ) ( ) \ ( ) and ( )

{ \ ( ) and } ( By De Morgan's Law )

{ \ ( ) and or )}

{ \ [ ( ) and

A B C x x A x B C
x x A x B x C
x x A x B x C
x x A B C

A B C

A B A C x x A B x A C

x x A B x A C

x x A B x A C

x x A B x A

∩ − = ∈ ∈ −
= ∈ ∈ ∉
= ∈ ∈ ∉

= ∈ ∩ ∩

= ∩ ∩

∩ − ∩ = ∈ ∩ ∈ ∩

= ∈ ∩ ∈ ∪

= ∈ ∩ ∈

= ∈ ∩ ∈



]or[ ( ) and ]

{ \ ( ) ( )}

{ \ ( )}

{ \ ( )}

x A B x C

x x A A B or x A B C

x x or x A B C

x x A B C

A B C

∈ ∩ ∈

= ∈ ∩ ∩ ∈ ∩ ∩

= ∈∅ ∈ ∩ ∩

= ∈ ∩ ∩

= ∩ ∩

4. If A,B and C are sets, then analytically Prove that 
 ( ) ( ) ( ).A B C A B A C× ∩ = × ∩ ×
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Proof:

( ) {( , ) \ and y (B C)}
{( , ) \ and (y and y )}
{( , ) \ ( and y )and ( and y )}
{( , ) \ ( , ) ( ) ( )}
( ) ( )

A B C x y x A
x y x A B C
x y x A B x A C
x y x y A B A C

A B A C

× ∩ = ∈ ∈ ∩
= ∈ ∈ ∈
= ∈ ∈ ∈ ∈
= ∈ × ∩ ×
= × ∩ ×

5. If A,B,C and D are sets, then analytically Prove that  
 ( ) ( ) ( ) ( ).A B C D A C B D∩ × ∩ = × ∩ ×

Proof:

( ) ( ) {( , ) \ ( ) and ( )}
{( , ) \ ( and ) and (y and y )}
{( , ) \ ( and y )and (x and y )}
{( , ) \ ( , ) ( ) and ( , ) ( )}
{( , ) \ ( , ) ( ) ( )}
( ) ( )

A B C D x y x A B y C D
x y x A x B C D
x y x A C B D
x y x y A C x y B D
x y x y A C B D

A C B D

∩ × ∩ = ∈ ∩ ∈ ∩
= ∈ ∈ ∈ ∈
= ∈ ∈ ∈ ∈
= ∈ × ∈ ×
= ∈ × ∩ ×
= × ∩ ×

Exercise:

If A and Baresets,then analytically Prove that A B
3.If A,Band Caresets,then analytically Prove that A (B C)=

If A,Band Careset

1.If A,BandCaresets, then analytically Prove that A-(B C)=(A-B) (A-C)

2.
(A B) (A C)

4.

A B A B⊕ =

∩

⊕ = ⊕
⊕ ∩∩ ⊕

∪

∩
s,then analytically Prove that ( ) ( )

5.If A,Band Caresets,then analytically Prove that ( ) (B )and

( ) (B ) A B

A C C

A C C

A B C A B C
∩ ∩

∩ ∩

− − = − ∪
⊆

⊆ → ⊆

1.1.10 Introduction to function

Functions play a fundamental role in set theory, a branch of 
mathematics that deals with the study of sets and their properties. In set 
theory, functions provide a way to establish relationships between sets. 

Definition of a Function:

In set theory, a function is defined as a special type of relation 
between two sets, known as the domain and the codomain. A function 
assigns exactly one element from the codomain to each element in the 
domain. This means that for every input in the domain, there is a unique 
output in the codomain.
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Notation:

Functions in set theory are commonly represented using arrow 
notation. For example, if we have a function f that maps elements from set 
A to set B, we write it as: f: A → B

Elements of a Function:

The elements involved in a function are:

a) Domain: The set of all possible input values for the function. It specifies 
the starting point of the function.

b) Codomain: The set that contains all possible output values for the 
function. It represents the set to which the function maps the elements.

c) Range: The set of all actual output values of the function. It is the subset 
of the codomain that contains the mapped elements.

d) Mapping: The association between the elements of the domain and the 
elements of the codomain. Each element in the domain is mapped to a 
unique element in the codomain.

Injective, Surjective, and Bijective Functions:

In set theory, functions can have different properties based on 
how they map elements. These properties include:

a) Injective (One-to-One): A function is injective if each element in the 
domain maps to a distinct element in the codomain. In other words, no 
two elements in the domain map to the same element in the codomain.

b) Surjective (Onto): A function is surjective if every element in the 
codomain has at least one corresponding element in the domain. In 
other words, the function covers the entire codomain.

c) Bijective: A function is bijective if it is both injective and surjective. It 
means that each element in the domain maps to a unique element in 
the codomain, and the function covers the entire codomain.

Composite and Inverse Function:

Composition of Functions:

In set theory, functions can be composed, meaning that the 
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output of one function can serve as the input for another function. The 
composition of two functions, f and g, is denoted as g∘f, where g is applied 
to the output of f.

Inverse Functions:

An inverse function undoes the mapping of a given function. For 
a function f: A → B, an inverse function f^(–1): B → A exists if and only if 
f is bijective. The inverse function reverses the mapping, taking elements 
from the codomain back to the domain.

Function Notation and Examples:

Functions can be defined explicitly using set-builder notation or 
explicitly specifying the mapping for each element. Here is an example:

a. Explicit Notation:

 f: A → B

 f(x) = 2x, where A = {1, 2, 3} and B = {2, 4, 6}

  The function f maps elements from A to B, doubling each element. For 
example, f (2) = 4.

b. Set-Builder Notation:

 f: A → B

 A = {x | x is an integer}, B = {x | x is an even integer}

 f(x) = 2x, where x is an element in A.
  This notation defines the function f as mapping all integers in A to even 

integers in B by doubling each element.
Understanding functions in set theory helps in analyzing and describing 
relationships between sets. Functions provide a mathematical framework 
to study mappings and transformations, making them a crucial concept in 
various branches of mathematics and computer science.

Composite functions

The important thing to remember when finding a composite 
function is the order in which the functions are written: fg (x) means first 
apply the function g to x, then apply the function to the result.
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Find and Evaluate Composite Functions

Before we introduce the functions, we need to look at another 
operation on functions called composition. In composition, the output of 
one function is the input of a second function. For functions f and g, the 
composition is written f∘g and is defined by

(f∘g)(x)=f(g(x)).

We read f(g(x)) as “ f of g of x. “

To do a composition, the output of the first function, g(x), becomes 
the input of the second function, f, and so we must be sure that it is part 
of the domain of f.

Composition of Functions

The composition of functions f and g is written f⋅g and is defined by

(f∘g)(x)=f(g(x))

We read f(g(x)) as f of g of x.

We have actually used composition without using the notation many 
times before. When we graphed quadratic functions using translations, we 
were composing functions. For example, if we first graphed g(x)=x^2 as a 
parabola and then shifted it down vertically four units, we were using the 
composition defined by (f∘g)(x)=f(g(x)) where f(x)=x–4.

 

Example 1

The functions f, g, and h are defined by:
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Find the following composite functions:

(i) fg(x)

(ii) gh (x)

(iii) hgf (x)

(iv) f2 (x)

Solution

(i)  

 Apply g followed by f; i.e. square, then add 1.

(ii) 

 Apply h followed by g;i.e. multiply by 3 , then square.

(iii) 

  Apply followed by g followed by h; i.e. add 1, then square, then 
multiply by 3

(iv) 

Example 2

The functions f and g are defined as:
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(i) What is the range of each function?

(ii) Find the inverse function f1, stating its domain.

(iii) Find the inverse function g–1, stating its domain.

(iv) Write down the range of f–1 and the range of g–1.

Solution

(i) The range of f is f(x) ≥ – 4. The range of g is g(x) ≥ 0.

(ii) The function can be written as

 Interchanging x and y : Rearranging : The domain of f –1 is the same as 
the range of f.

(iii) The function can be written as

 Interchanging x and y The domain of g–1 is the same as the range of g.

(iv) The range of f–1 is f–1 (x) ≥ 0 (the same as the domain of f)

 The range of g–1 is g–1 (x) ≥ 3 (the same as the domain of g)

Example 3:

For functions f(x) = 4x – 5 and g(x) = 2x + 3, 

find: (a) (f ∘ g)(x), (b)(g ∘ f)(x), and (c) (f ⋅ g)(x).

Solution

(a) Use the definition of (f ∘ g)(x). (f ∘ g)(x) = f(g(x))
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(b) Use the definition of (f ∘ g)(x). (g ∘ f)(x) = g(f(x))

(c) Notice that (f – g)(x) is different than (f ∙ g)(x). In part (a) we did the 
composition of the functions. Now in are not composing them, we are 
multiplying them.

 Use the definition of (f . g)(x). 

 Substitute f(x) = 4x – 5 and g(x) = 2x + 3.

Example 4: 

For functions f(x) = x2 – 4, and g(x) = 3x + 2, find: (a) (f ∘ g)(–3),  
(b) (g ∘ f)(–1), and (c) (f ∘ f )(2).

Solution

(a) Use the definition of (f ∘ g)(–3). (f ∘ g)(–3) = f(g(–3))

 

(b) Use the definition of (g ∘ f)(–1).

(c) Use the definition of (f ∘ f)(2).
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Example 5:

Verify that f(x) = 5x – 1 and g(x) 
x+1

5  are inverse functions.

Solution

The functions are inverses of each other if g(f(x) = x and f(g(x)) = x.

Example 6:

Find inverse of f(x) = 4x + 7.
Solution :

Step 1. Substitute y for f(x). Replace f(x) with y.
f(x) = 4x + 7
    y = 4x + 7

Step 2. Interchange the 
variables x and y.

Replace x with y and 
then y with x.

    x = 4y + 7DDE, P
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Example 7:

Find the inverse of 5( ) 2 3f x x= −

Solution:

Substitute for y for f(x).

Interchange the variables x and y.

Solve for y.

Substitute f –1(x) for y.

Verify that the functions are inverses.

DDE, P
on

dic
he

rry
 U

niv
ers

ity



Notes

36

Exercises:

Find and evaluate Composite Functions and find (a) (f ∘ g)(x), (b) (g ∘ f)
(x), and (c) (f ⋅ g)(x).

1 f(x) = 4x + 3 and g(x) = 2x + 5

2 f(x) = 6x – 5 and g(x) = 4x + 1

3 f(x) = 3x and g(x) = 2x2 – 3x

4 f(x) = 2x – 1 and g(x) = x2 + 2

5 For functions f(x) = 2x2 + 3 and g(x) = 5x – 1, find
 (a) (f ∘ g)(–2) 

(b) (g ∘ f )(–3) 
(c) (f ∘ f )(–1)

1.1.11 Introduction to Numbers

Numbers are fundamental mathematical entities used for counting, 
measuring, and quantifying. The most basic type of number is the natural 
or counting numbers, which include 1, 2, 3, and so on. Whole numbers 
include the natural numbers along with zero (0), providing a complete set 
of non-negative numbers.

Integers encompass all whole numbers and their negative 
counterparts, including zero. Rational numbers are numbers that can be 
expressed as a fraction or ratio of two integers. They include fractions and 
terminating or repeating decimals.

Irrational numbers are numbers that cannot be expressed as 
fractions and have non-repeating decimal representations. Examples 
include √2 and π.
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Real numbers comprise both rational and irrational numbers and 
are used to represent quantities on a continuous number line.

Complex numbers involve a combination of real and imaginary 
numbers. They are written in the form a + bi, where a and b are real 
numbers and i is the imaginary unit (√–1).

Different number systems exist, 
such as binary (base–2), octal (base-8),  
and hexadecimal (base–16), which are used in computer science and 
digital systems.

Number properties, including commutative, associative, and 
distributive properties, govern the behavior of numbers in mathematical 
operations.

Prime numbers are integers greater than 1 that have no divisors 
other than 1 and themselves. They play a crucial role in number theory 
and cryptography.

Number sequences, such as arithmetic progressions (sequences 
with a constant difference between terms) and geometric progressions 
(sequences with a constant ratio between terms), have various applications 
in mathematics and real-world scenarios.

Number patterns, like the Fibonacci sequence and Pascal’s 
triangle, exhibit recurring relationships and have intriguing mathematical 
properties.

Word Definition Example

Natural Numbers The numbers that 
we use when we are 
counting or ordering

{1, 2, 3, 4, 5, 6, 7, 8, 9, 
10, 11 …}

Whole Numbers The numbers that 
include natural 
numbers and zero. Not 
a fraction or decimal.

{0, 2, 3, 4, 5 6, 7, 8, 9, 
10, 11 …}DDE, P
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Integer A counting number, 
zero, or the negative 
of a counting number. 
No fractions or 
decimals

{… –3, –2, –1, 0, 1, 2, 
3 …}

Decimal Number Any number that 
contains a decimal 
point

0.256 or 1.2

Rational Numbers Can be expressed as 
a fraction. Include 
integers and fractions 
or decimals

1/2 , 2/3 , 4/7, 0.5, 6.7

Irrational 
Numbers

Cannot be expressed 
as a fraction

Π, √2 …

Positive Greater than 0. x is 
positive if x > 0.

1, 17, 13.44, π, 18/3

Negative Less than 0. x is 
negative if x < 0.

–17, –18.892, –1981, –π

Non-Negative Greater than or equal 
to 0. x is non-negative 
if x ≥ 0.

0, 1, π, 47812, 16/3, 
189.53

Non-Positive Includes negative 
numbers and 0.

Even An integer that is 
divisible by 2.

0; 2; –16; –8; 99837222

Odd An integer that is 
NOT divisible by 2.

1; 7; 19; –17

Place Value It is the value of where 
the digit is in the 
number. Examples are 
units, tens, hundreds, 
thousands, ten 
thousands, hundred 
thousands, millions,…

Equivalent Equal (=) ½ and 0.5 are 
equivalent
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Distinct Not equal. x and y are 
distinct if x ≠ y.

2 and 3 are distinct.

0 and 11 are distinct. π 
and 3 are distinct.

Constant A number that does 
not change

Consecutive 
(Evenly spaced)

In a row; without any 
missing; numbers or 
objects are consecutive 
if none of them are 
skipped.

1, 2, 3, and 4 are 
consecutive integers.

4, 6, 8, and 10 are 
consecutive even 
integers.

2008, 2009, and 2010 
are consecutive years.

1.1.12 Self Assessment question

1.  Construct the table for each of the following compound propositions 
(p ↔ q) ↔  (r ↔ s).

2. Prove that √7 is irrational by giving a proof by contradiction.

3. Use mathematical Induction, Prove that 
13 13
2

nn
m

m

+ −
=∑

4.  Find and evaluate Composite Functions and find (a) (f ∘ g)(x),  
(b) (g ∘ f)(x), and (c) (f ⋅ g)(x). 
f(x) = 7x + 2 and g(x) = 2x + 54.

5. If A and Baresets,then analytically Prove that A B A B A B⊕ = ⊕ = ⊕

1.1.13 Summary

Connectives

  ➢ Conjunction DDE, P
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  ➢ Disjunction 

  ➢ Negation

 
  ➢ Conditional Statement: [If… ......... then]

P q p → q

T T T

T F F

F T T

F F T

  ➢ Definition: Converse, Contrapositive & Inverse Statements

 If p q→  is a conditional statement, then
 a.  q p→  is called the converse of p q→

 b. q p¬ → ¬  is called the contrapositive of p q→

 c. p q¬ → ¬  is called the inverse of  p q→

  ➢ Biconditional

 
p q P ↔ q
T T T
T F F
F T F
F F T

Introduction to proofs:

Proof: A proof is a valid argument that establishes the truth of a 
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mathematical statement.

Theorem: A theorem is a statement that can be shown to be true

1. Direct Proofs: A direct proof shows that a conditional statement

 𝑝 → 𝑞 is true by showing that if 𝑝 is true then 𝑞 must also be true

2. Proof by contraposition (or) Proof by contra positive(or) indirect 
proof:

 In proof by contraposition of 𝑝 → 𝑞 we take q¬ as a hypothesis and  
axioms, definition together with rules of reference show that p¬  must  
follow.

3. Vacuous Proof

 To show that 𝑝 is false that proof is called vacuous proof of the  
conditional statement.

4. Trivial Proof: A proof of 𝑝 → 𝑞 that uses the fact 𝑞 is true is called a  
trivial proof.

5. Proof by contradiction:

 In proof by contradiction of 𝑝 → 𝑞 assume ¬ 𝑞 → ¬ 𝑝 to show that ¬  𝑝  
is true

6. Proofs of equivalence:

 To prove a theorem that is biconditional statement, that is a statement 
of the form 𝑝 ↔ 𝑞 we show that 𝑝 → 𝑞 and 𝑞 → 𝑝 are both true

7. Counter examples:

 A statement of the form ∀x P(x) is false we need only find a counter 
example,that is an example x for which P(x) is false.

  ➢ Statement of the Principle of Mathematical Induction:

 Let P(n) be a statement or proposition involving the natural number 
‘n’. We must go through two steps to prove that the statement P(n) is 
true for all natural numbers.

Step 1: We must prove that P (1) is true.

Step 2: By assuming P (k) is true, we must prove that P (k + l) is also true.

Note:

The condition (i) is known as the Basic step and the condition (ii) is 
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known as Inductive step

  ➢ SET OPERATIONS:

(i) The union of two sets A and B, denoted by A ∪ B, is the set of 
elements that belong to A or B to or to both, 

 viz., or A ∪ B = x ∣ x ∈ A or x ∈ B.

(ii) The intersection of two sets A and B, denoted by A ∩ B, is the set 
of elements that belong to both A and B. viz., A ∩ B = x ∣ x ∈ A 
and x ∈ B

(iii) If A and B are any two sets, then the set of elements that belong 
to A but do not belong to B is called the difference of A and B or 
relation complement of B with respect to A and is denoted by

 A – B or A\B. viz, A – B = x ∣ x ∈ A and x B∉

 (iv) If U is the universal set and A is any set, then the set of elements  
which belong to U but which do not belong to A is called the 
complement of A and is denoted by A'  or Ac or viz., Ac = x ∣ x ∈ A 
and x A∉

(v) If A and B are any two sets, the set of elements that belong to A 
or B, but not to both is called the symmetric difference of A and 
B and is denote by A ⊕ B or AΔB or A + B. It is obvious that  
A ⊕ B = (A – B) ∪ (B – A)
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UNIT – II 

Lesson 2.1 - Matrices and Determinants

Structure

2.1.1   Objective

2.1.2    Introduction

2.1.3   Definition

2.1.4   Types of Matrices

2.1.5    Matrix Operations

2.1.6    Properties of Matrices under addition

2.1.7    Additive identity of a matrix

2.1.8    Additive inverse of a matrix

2.1.9     Multiplication of matrix by a scalar:

2.1.10   Transpose of a Matrix

2.1.11   Singularity and Invertibility of a Matrix:

2.1.12   Determinants

2.1.13   Inverse of a matrix

2.1.14   Inverse of a matrix (or) Reciprocal matrix

2.1.15   Properties of Inverse of a Matrix

2.1.16  Self-Assessment Questions

2.1.17  Summary

2.1.1 Objectives:

1) Understand the meaning and properties of addition, scalar multiplica-
tion, and matrix multiplication

2) Explain the concept of transpose and its properties
3) Apply addition, scalar multiplication, and matrix multiplication to 

solve problems
4) Use the transpose of a matrix to solve problems
5) Determine whether a matrix is singular or invertible
6) Determine determinants, minors, and cofactors of matrices
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2.1.2 Introduction:

Matrices and determinants are important mathematical concepts 
that are used in various fields such as engineering, physics, computer 
science, and economics.

A matrix is a rectangular array of numbers, arranged in rows and 
columns. Matrices represent data and perform mathematical operations 
such as addition, subtraction, multiplication, and inversion.

The addition of matrices involves adding corresponding entries of 
two matrices of the same size. For example, if A and B are two matrices of 
the same size, then A+B is the matrix whose ( ), thi j entry is the sum of the 
( ), thi j  entries of A and B.

Scalar multiplication of a matrix involves multiplying each entry 
of a matrix by a scalar. For example, if A is a matrix and k is a scalar, then 
kA is the matrix whose ( ), thi j entry is k times the ( ), thi j entry of A.

Matrix multiplication involves multiplying rows of the first matrix 
by columns of the second matrix to produce a new matrix. For example, if 
A and B are matrices such that the number of columns in A is equal to the 
number of rows in B, then AB is the matrix whose ( ), thi j entry is the dot 
product of the thi  row of A and the thj column of B.

The transpose of a matrix involves interchanging rows and 
columns. For example, if A is a matrix, then the transpose of A, denoted 
by TA , is the matrix whose ( ), thi j entry is the ( ), thj i entry of A.

A matrix is singular if its determinant is zero, and invertible 
otherwise. Determinants are scalar values associated with square matrices 
that can be used to determine whether a matrix is invertible or singular.

Properties of determinants include linearity, alternate sign, and 
multiplication across rows or columns. The minor of an entry in a matrix 
is the determinant of the submatrix obtained by deleting the row and 
column containing that entry. The cofactor of an entry in a matrix is the 
minor multiplied by ( )( 1) i j+− where i and j are the row and column indices 
of the entry.

Minors and cofactors of a matrix are related to its determinants 
and can be used to find the inverse of a matrix. The inverse of matrix A is 
the 
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matrix 1A− such that 1 1AA A A I− −= = , where I is the identity 
matrix. The formula for the inverse of a matrix involves the adjugated of 
the matrix, which is the transpose of the matrix of cofactors of A.

2.1.3 Definition:

A system of m × n numbers arranged in the form of an ordered set 
of m horizontal lines called rows & n vertical lines called columns is called 
an n matrix. The matrix of order m × n is written as

Note:
i) Matrices are generally denoted by capital letters.

ii)  The elements are generally denoted by corresponding small 
letters.

2.1.4 Types of Matrices:

(a) Rectangular matrix:

Any m × n Matrix where m ≠ n is called rectangular matrix.

Ex:

2 3

2 3 0
1 0 0

×

 
 
 

(b) Column Matrix:

It is a matrix in which there is only one column. 

Ex:

3 1

3
2
1

×

 
 
 
  

(c) Row Matrix:

It is a matrix in which there is only one row.
Ex:
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[ ]
3 1

5 7 3
×

Square Matrix: It is a matrix in which the number of rows equals the number 
of columns.

i.e its order is n x n.

Ex:

2 2

4 5
7 2

×

 
 
 

(d) Diagonal Matrix:

It is a square matrix in which all non-diagonal elements are zero.

Ex:

3 3

2 0 0
0 5 0
0 0 9

×

 
 
 
  

Scalar Matrix: It is a square diagonal matrix in which all diagonal elements 
are equal.

Ex:

3 3

5 0 0
0 5 0
0 0 5

×

 
 
 
  

(e) Unit Matrix: It is a scalar matrix with diagonal elements as unity and is 
denoted by I.

Ex:

3 3

1 0 0
0 1 0
0 0 1

×

 
 
 
  

(f) Null matrix (or) zero matrix:

In a matrix, if all the elements are zero, then the matrix is called a null matrix 
or zero matrices and is denoted by O.

Ex:

3 3

0 0 0
0 0 0
0 0 0

×

 
 
 
  

(g) Upper Triangular Matrix:

It is a square matrix in which all the elements below the principle diagonal 
are zero.

Ex:

3 3

3 5 9
0 6 7
0 0 4

×

 
 
 
  

(h) Lower Triangular Matrix:
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It is a square matrix in which all the elements above the principle diagonal 
are zero.

Ex:

3 3

3 0 0
4 6 0
2 3 4

×

 
 − 
  

(i) Transpose of Matrix:

 It is a matrix obtained by interchanging rows into columns or columns 
into rows.

Ex:

2 3
3 2

2 1
2 6 8

6 4
1 4 5

8 5

T

A A
×

×

− 
   = =   −    

(j) Properties of Transpose:

1)  ( AT )T = A

2)  ( A ± B) = AT ± BT

3)  (kA)T =kAT

4)  ( AB)T = BT AT

(j) Symmetric Matrix:

 If for a square matrix A, A = AT then A is symmetric. 

3 3

1 2 0
2 3 5
0 5 4

×

 
 
 
  

 Skew Symmetric Matrix : If for a square matrix A, A = – AT then it is a 
skew-symmetric matrix.

3 3 3 3

0 3 2 0 3 2
3 0 5 3 0 5
2 5 0 2 5 0

TA A

× ×

   
   = − = −   
   − − − −   

 Note: For a skew Symmetric matrix, diagonal elements are zero.

(k) Orthogonal matrix:

 If a square matrix satisfies the relation TAA I= then the matrix A is called 
an orthogonal matrix. & AT = A–1

 The number of rows and columns in a matrix is called the order of the 
matrix. If a matrix A has m rows and n columns, then A is said to be of 
order m x n.
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(l) Order of a Matrix

 The number of rows and columns in a matrix is called the order of the 
matrix. If a matrix

 A has m rows and n columns, then A is said to be of order m x n. 

Example

2 2 2 3
3 3

3 8 9
7 9 1 4 3

1. 2. 3. 6 4 5
5 4 4 6 1

7 8 1
A B C

× ×
×

 
−     = = =           

(m) Equal matrices:

 Two matrices are said to be equal if and only if

 (1)   They have the same order
 (2)   Their corresponding entries are equal

2.1.5 Matrix Operations:

Addition and Subtraction of matrices:

Two matrices are considered conformable for addition when they have the 
same size. (Number of rows equal to the number of columns.

Thus if , ,and = are i j i jA a B b m n   = ×    then they can be added, and their 
sum is the matrix 

11 12 11 12 11 11 12 12

21 22 21 22 21 21 22 22

a a a a a b a b
A B

a a a a a b a b
+ +     

+ = + =     + +     

Similarly,

11 12 11 12 11 11 12 12

21 22 21 22 21 21 22 22

a a a a a b a b
A B

a a a a a b a b
− −     

− = − =     − −     

2.1.6 Properties of Matrices under addition

The addition of matrices satisfies the following properties:

(i)  Commutative law: If , ,and = are i j i jA a B b m n   = ×     then A + B = B + A
(ii) Associative law: For any three matrices 

, , ,, = and C= , then ( ) ( )i j i j i jm n m n m n
A a B b c A B C A B C

× × ×
     = + + = + +     
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(ii) Existence of additive identity:

  Let ,i j m n
A a

×
 =   be an m n×  matrix and O be an m n×  zero matrix, 

then A O O A+ = + . In other words, O is the additive identity for matrix 
addition.

2.1.7 Additive Identity of a Matrix:

If A and B are two matrices of the same order and A+B=A=B+A, then 
matrix B is called the additive identity of a matrix. For any matrix A and 
zero matrices of the same order, then 0 is called the additive identity of A.

Examples:

1 2 0 0
If and O=

2 4 0 0

1 2 0 0 1 2
2 4 0 0 2 4

0 0 1 2 1 2
0 0 2 4 2 4

A

A O A

O A A

   
=    

   
     

+ = + = =     
     
     

+ = + = =     
     

2.1.8 Additive Inverse of a Matrix

If B are called additive inverse of each other, then A+B=O=B+A

Then A and and B are two matrices of same order.

Additive inverse of any matrix A is obtained by changing the sign of each 
non-zero entry of A.

Example:

If 
1 2
4 3

A  
=  

 

Then 
1 2

( )
4 3

B A
− − 

= − =  − − 
 is the additive inverse of A .

It can be verified as

1 2 1 2 0 0
0

4 3 4 3 0 0
A B

− −     
+ = + = =     − −     
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2.1.9 Multiplication of Matrix by a Scalar

The product of a matrix A by a scalar k is a matrix whose each element is 
k times the corresponding elements of A.

Example:

If 
1 3 2( 1) 2(3) 2 6

then 2
2 4 2(2) 2( 4) 4 8

A A
− − −     

= = =     − − −     

(a) Properties of Scalar multiplication:

( ) ( ) )

1.
2.
3. where and are real numbe

(
r( s

)
kA Ak
k A B kA kB
k bA kb k b

=
+ = +

=

(b) Multiplication of matrices:

Two matrices A and B are conformable for multiplication, giving product AB 
if the number of columns of A is equal to the number of rows of B.

Thus if A is an m n× matrix and B is an n p× matrix, then the product C AB=

of the matrices A  and B is an m p× matrix C .

Thus, 

11 12 13 11 12 11 11 12 21 13 31 11 12 12 22 13 32

21 22 23 21 22 21 11 22 21 23 31 21 12 22 22 23 32

31 32 33 31 32 31 11 32 21 33 31 31 12 32 22 33 32

a a a b b a b a b a b a b a b a b
A B a a a b b a b a b a b a b a b a b

a a a b b a b a b a b a b a b a b

+ + + +     
     × = × = + + + +     
     + + + +     

(c) Properties of Multiplication of Matrices:

Example: 

( )
)

1.
2.  

( ) ( )

3.  
4.

(
A BC AB C
A B C AB AC
B C A BA CA

AB BA

=
± = ±

+ = +

≠
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2.1.9 Multiplication of Matrix by a Scalar

The product of a matrix A by a scalar k is a matrix whose each element is 
k times the corresponding elements of A.

Example:

If 
1 3 2( 1) 2(3) 2 6

then 2
2 4 2(2) 2( 4) 4 8

A A
− − −     

= = =     − − −     

(a) Properties of Scalar multiplication:

( ) ( ) )

1.
2.
3. where and are real numbe

(
r( s

)
kA Ak
k A B kA kB
k bA kb k b

=
+ = +

=

(b) Multiplication of matrices:

Two matrices A and B are conformable for multiplication, giving product AB 
if the number of columns of A is equal to the number of rows of B.

Thus if A is an m n× matrix and B is an n p× matrix, then the product C AB=

of the matrices A  and B is an m p× matrix C .

Thus, 

11 12 13 11 12 11 11 12 21 13 31 11 12 12 22 13 32

21 22 23 21 22 21 11 22 21 23 31 21 12 22 22 23 32

31 32 33 31 32 31 11 32 21 33 31 31 12 32 22 33 32

a a a b b a b a b a b a b a b a b
A B a a a b b a b a b a b a b a b a b

a a a b b a b a b a b a b a b a b

+ + + +     
     × = × = + + + +     
     + + + +     

(c) Properties of Multiplication of Matrices:

Example: 

( )
)

1.
2.  

( ) ( )

3.  
4.

(
A BC AB C
A B C AB AC
B C A BA CA

AB BA

=
± = ±

+ = +

≠

If 
3 1 2 1 3

and
0 2 1 0 4

A B   
= =   − −   

, then

(3 2) (1 1) (3 1) (1 0) (3 3) (1 4)
(0 2) ( 2 1) (0 1) ( 2 0) (0 3) ( 2 4)

5 3 13
2 0 8

C AB

C

× + × − × + × × × × 
= =  × + − × − × + − × × + − × 

 
=  − 

Remark: 

If AB is defined, then BA need not be defined. In the above example, AB is 
defined but BA is not defined because B has 3 columns while A has only 2 ( 

and not 3) rows. If A, B are, respectively m n×  and k l×  matrices, then both 

and AB BA  are defined if and only if n = k and l = m. In particular, if both 

andA B  are square matrices of the same order, then both AB and BA are 
defined.

In the above example both AB and BA are of different order and so AB BA≠

. But one may think that perhaps AB and BA could be the same if they were of 
the same order. But it is not so, here we give an example to show that even if 
AB and BA are of same order, they may not be same.

Example:
 

Thus, matrix multiplication is not commutative.

Note: 

This does not mean that AB BA≠ for every pair of matrices A, B for which AB 
and BA , are defined. Observe that multiplication of diagonal matrices of same 
order will be commutative.
Problems: 

1 0 0 1 0 1 0 1
If and B= then and

0 1 1 0 1 0 1 0
Clearly .

A AB AB

AB BA

−       
= = =       − −       

≠
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1.
cos sin sin cos

Simplify cos sin
sin cos cos sin

θ θ θ θ
θ θ

θ θ θ θ
−   

+   −   
.

Solution:
2 2

2 2

cos sin sin cos cos sin cos sin cos sin
cos sin

sin cos cos sin cos sin cos sin cos sin

1 0
0 1

θ θ θ θ θ θ θ θ θ θ
θ θ

θ θ θ θ θ θ θ θ θ θ
−  + −   

+ =     − − + +     
 

=  
 

2. 
7 0 3 0

If & find & .
2 5 0 3

X Y X Y X Y   
+ = − =   

   

Solutions.

1 1 3 5
3.Solve for , , , if 2 3 3 .

0 2 4 6
x z

x y z t
y t

−     
+ =     

     

Solution:

7 0
(1)

2 5

3 0
(2)

0 3

X Y

X Y

 
+ = − − − − − − − − − − − − 

 
 

− = − − − − − − − − − − − − 
 

7 0 3 0
(1) (2) 2

2 5 0 3

10 0
2

2 8

5 0
1 4

7 0 3 0
(1) (2) 2

2 5 0 3

4 0
2

2 2

2 0
1 1

X

X

X

Y

Y

Y

   
+ ⇒ = +   

   
 

⇒ =  
 

 
⇒ =  

 
   

− ⇒ = −   
   
 

⇒ =  
 

 
⇒ =  
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2 3 9 2 3 15

2 12
2 6 2 18

6
3 9

x z
y

x z
y

x z

⇒ + = ⇒ − =
⇒ =

⇒ = ⇒ =
⇒ =

⇒ = ⇒ =
 

1 1 3 5
2 3 3

0 2 4 6

2 2 3 3 9 15
2 2 0 6 12 18

2 3 2 3 9 15
2 2 6 12 18

x z
y t

x z
y t

x z
y t

−     
+ =     

     
−     

⇒ + =     
     

+ −   
⇒ =   +   

2 1 10
4. If x .Find the values of & .

3 1 5
 Solution:

2 1 10
x

3 1 5

2 10
3 5

2 10 & 3 5
Solving theseequations, we get x=3,y=-4.

y x y

y

x y
x y

x y x y

−     
+ =     

     

−     
+ =     

     
−     

⇒ + =     
     

⇒ − = + =

2

2

2

2

3 2 1 0
5.If & find k so that 2 .

4 2 0 1
Solution:

2
3 2 3 2 1 2
4 2 4 2 4 4

1 2 3 2 2 0
2

4 4 4 2 0 2

3 2 2 1 2
4 2 2 4 4
3 2 1
3

A I A kA I

A kA I

A

k k
A kA I

k k

k k
k k
k
k

−   
= = = −   −   

= −

− − −    
= =    − − −    

− −     
= − ⇒ = −     − −     
− − −   

=   − − −   
⇒ − =
⇒ 3

1k
=

⇒ =

 2  12
 2  6  18

 6

t
t

t

⇒ =
⇒ + =
⇒ =
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2

2

2

2 0 1
6.If 2 1 3 find 5 6 .

1 1 0
Solution:

2 0 1 2 0 1 5 1 2
2 1 3 2 1 3 9 2 5
1 1 0 1 1 0 0 1 2

5 1 2 2 0 1 1 0 0
5 6 9 2 5 5 2 1 3 6 0 1 0

0 1 2 1 1 0 0 0 1

5 1 2
9 2 5

A A A I

A

A A I

 
 = − + 
 − 

−    
    = = −    
    − − − −    

−     
     − + = − − +     
     − − −     

−
= −

10 0 5 6 0 0
10 5 15 0 6 0

0 1 2 0 1 2 0 0 6

1 1 3
1 1 10
5 4 4

     
     − +     
     − − − −     

− − 
 = − − − 
 − 

2.1.10 Transpose of a Matrix

The transpose of a matrix is a new matrix that is obtained by interchanging 
its rows and columns. In other words, if A is an   m n×  matrix, then the 
transpose of A , denoted as TA , is an   n m× matrix.

Formally, the i,j-th entry of the transpose of A , denoted as ( )T
ijA , is equal to 

the j,i-th entry of A , i.e., ( )T
ij jiA A=

Properties of transpose:

1.  ( )T TA A= : The transpose of the transpose of a matrix is the original  
     matrix itself.

2.  ( )T T TA B A B+ = + : The transpose of a sum of matrices is equal to the  
     sum of their transposes.

3.  ( )T TkA kA= : The transpose of a scalar multiple of a matrix is equal to    
     the scalar multiple of the transpose of the matrix.

 4. ( )T T TAB B A=  The transpose of a product of matrices is equal to the   
     product of their  transposes in reverse order.
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The diagonal elements of a square matrix remain the same after taking its 
transpose, i.e., 

  .( ) i
T

i iiA A= The determinant of a matrix remains the same after taking its 
transpose, i.e.,

    det ( TA ) = det(A).

A matrix is symmetric if and only if it is equal to its transpose, i.e., A = TA .

The transpose operation has many important applications in linear algebra, 
such as solving systems of linear equations, computing the inverse of a matrix, 
and diagonalization of matrices.

Examples 1:

Find the transpose of the matrix B.
5 6
2 3

B  
=  − 

.

Solution:

To find the transpose of the 2 2×  matix.

Let’s switch the rows into columns and columns into rows. the resultant matrix 
is:

5 2
6 3

TB
− 

=  
 

Example 2: 

Find the transpose of the matrix A. 
2 1 3
0 5 2

A
− 

=  
 

.

Solution:

To find the transpose of the given 2 3× matix. Lets write the rows as columns.

The resultant matrix is of the order 3 2× .

2 0
1 5

3 2
B

 
 = − 
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Example 3:
Verify whether 

Solution: 
Let us find the transpose of matrix Aby writing its rows as columns. 

2 3 1
if 3 4 7 .

1 7 9

TA A A
− 

 = = − − 
 − 

We can clearly see that TA A= . 
Note: We call A here a symmetric matrix. 

Exercise: 
Find the transpose of the given matrix B

 (i) 
1 5
3 4

B  
=  − 

    (ii) 
7 8 3
5 9 1

A
− 

=  
 

  (iii)  
7 8 9

2 3 10
1 4 5

− 
 − − 
  

2.1.11 Singularity and Invertibility of a Matrix

(a) Singularity of a Matrix:

A singular matrix is also called a degenerate matrix. A square matrix A is 
singular if it does not have an inverse, i.e., it is not invertible. In other words, 
if there exists no matrix B such that AB = BA = I, the matrix A is singular. 
Singularity is equivalent to having a determinant of zero (det(A) = 0).In a 
singular matrix, the rows or columns may be linearly dependent, leading to a 
loss of information.

Invertibility of a matrix:

An invertible matrix is also called a non-singular or non-degenerate matrix. A 
square matrix A is invertible if there exists another square matrix B such that 
AB = BA = I, where I is the identity matrix. The inverse of an invertible matrix 

A is denoted as 1A− .If a matrix A is invertible, it implies that its determinant is 
non-zero (det(A) ≠ 0).Inverse matrices are unique for a given matrix A.

2 3 1
3 4 7

1 7 9

TA
− 

 = − − 
 − 
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(b) Properties and implications of Singularity and Invertibility of a Matrix:

 An invertible matrix can be thought of as a non-singular linear 
transformation, while a singular matrix represents a degenerate or non-
invertible transformation. Invertible matrices have full rank, meaning that the 
rank of the matrix is equal to the number of rows or columns. A matrix is 
invertible if and only if its columns (or rows) are linearly independent.

 If a matrix is singular, its null space (or kernel) is non-trivial, meaning 
that there exist non-zero vectors that are mapped to the zero vector by the 
matrix. Singular matrices can arise when there are redundant equations in a 
system or when the system is underdetermined or inconsistent.

 These are the basic notes regarding the singularity and invertibility 
of matrices. They play a crucial role in various areas of mathematics, physics, 
engineering, and computer science, such as solving systems of linear equations, 
calculating determinants, and performing matrix operations.

2.1.12 Determinants

In this section, we shall study determinants up to order three only with 
real entries. Also, we will study various properties of determinants, minors, 
cofactors and application of determinants in finding the area of a triangle, 
adjoint and inverse of a square matrix, consistency and inconsistency of 
system of linear equations and solution of linear equation of linear equations 
in two or three variables using inverse of a matrix.
 

(a) Determinant of a matrix:

To every square matrix ( , )
th

ija i j= we can associate a number (real or complex) 

called determinant of the square matrix A, where ( , )
th

ija i j= element of A. 

If A be a square matrix then A = determinant of A (i.e)   det A A= .

If ( ) 0 Matrix A is called Singular Matrix.

(ii) 0, Matrix A is called Non-Singular Matrix

i A

A

= ⇒

≠ ⇒

Note : For non-singular matrix A-1 exists.

(b) Determinant of a matrix of order one:

Let A=[a] be the matrix of order 1, then the determinant of A is defined to 
be equal to a.
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(c) Determinant of a matrix of order two:

Let 11 12

21 22

a a
A

a a
 

=  
 

 be a matrix of order 2. Then the determinant of A is 

defined as:

11 12
11 22 12 21

21 22

det
a a

A A a a a a
a a

= = = = −�

Example:

  Evaluate 
2 4
1 2−

.

Solution:

              We have 
2 4

2(2) 4( 1) 8
1 2

= − − =
−

.
 

(d) Determinant of a matrix of order three:

 Determinant of a matrix of order three can be determined by expressing 
it in terms of second order determinants. This is known as expansion of a 
determinant along a row (or a column). There are six ways of expanding a 
determinant of order 3 corresponding to each of three rows and three columns 
giving the same value as shown below.3

Consider the determinant of square matrix A = 

11 12 13

21 22 23

31 32 33

a a a
a a a
a a a

 
 
 
  (i.e) 

3

11 22 33 23 32 12 21 33 23 31 13 21 32 2
11 12 13

21 22 22

31 32 3

2 31( ) ( ) ( )
A

a a a a a a a a
a a a
a a a
a a

a a a a a a

a

a
= =

= − − − + −
 

Note:

1. If A=kB where A and B are square matrices 
of order n, then   , where  1,  2,3nA k B n= = .

2.  For easier calculations, we shall expand the determinant along that 
row or  column containing maximum zeros.
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Example:1 

   1 Evaluate 
1 2 4
1 3 0 .

4 1 0
−

 
Solution:
 
Note that in the third column, two entries are zero. So, expanding along third 
column (C3), we get

  

1 2 4
1 3 1 2 1 2

1 3 0 4 0 0
4 1 4 1 1 3

4 1 0
4( 1 12) 0 0 52

−
= − = − +

−

= − − − + = −

�

Example : 2 

        Evaluate 
0 sin cos

sin 0 sin .
cos sin 0

α α
α β

α β

−
−

−

Solution:

 
Example: 3 

Find the values of x for which 
3 3 2

.
1 4 1
x

x
=

Solution: 

We have  2

2

3 3 2
1 4 1

3 3 8
8

2 2

x
x

x
x

x

=

− = −

=

= ±

 

0 sin cos
0 sin sin sin sin 0

sin 0 sin 0 sin cos
sin 0 cos 0 cos sin

cos sin 0
0 sin ( sin cos ) cos (sin sin ) 0

A
α α

β α β α
α β α α

β α α β
α β

α β α α α β

−
− −

= − = − −
− −

−

= − − − =

DDE, P
on

dic
he

rry
 U

niv
ers

ity



Notes

60

(e) Properties of Determinants:

In the previous section, we have learnt how to expand the determinants.  In 
this section, we will study some properties of determinants which simplifies 
its evaluation by obtaining maximum number of zeros in a row or a column. 
These properties are true for determinants of any order.

Property:1 The value of the determinant remains unchanged if its rows and 
columns are interchanged. 

Example: Verify the above property 
2 3 5
6 0 4
1 5 7

−
=

−
� .

Solution: Expanding the determinant along the first row, we have 

                    
0 4 6 4 6 0

2 ( 3) 5 28
5 7 1 7 1 5

= − − + = −
− −

�

Property (1) verified.
 
Property:2 If any two rows (or columns) of a determinant are interchanged, 
then  sign of determinant changes.

Example:

 Verify the above property 2, 
2 3 5
6 0 4
1 5 7

−
=

−
�

Solution: 
Expanding the determinant along the first row, we have
 

0 4 6 4 6 0
2 ( 3) 5

5 7 1 7 1 5
∆ = − − +

−

By interchanging rows and columns, we get

2 6 1
0 5 6 1 6 1

3 0 5 2 ( 3) 5 28
4 7 4 7 0 5

5 4 7
Property (1) Verified.

∆ = − = − − + = −
− −

−
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Example: 

Verify the above property 2, 
2 3 5
6 0 4
1 5 7

−
=

−
�

Solution: 

Expanding the determinant along the first row, we have

 
2 6 1

0 5 6 1 6 0
3 0 5 2 ( 3) 5 28

4 7 4 7 1 5
5 4 7

∆ = − = − − + = −
− −

−

By interchanging the rows (i.e) second and third row, we have

1

1

2 3 5
6 0 4 28
1 5 7

−
∆ = =

−

∆ = ∆

Property: 3 If any two rows (or columns) of a determinant are identical) (all 
corresponding elements are same), then value of determinant is zero.

Example: 

Evaluate . 
3 2 3
2 2 3
3 2 3

∆ =

Solution: 

Expanding the determinant along the first row, we have  

3(6 6) 2(6 9) 3(4 6) 0∆ = − − − + − =

Property:4 If each element of a row (or a column) of a determinant is 
multiplied by a constant k, then its value gets multiplied by k.DDE, P
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Let 

11 12 13 11 12 13

21 22 23 1 21 22 23

31 32 33 31 32 33

1

and

Then  

a a a ka ka ka
a a a a a a
a a a a a a

k

∆ = ∆ =

∆ = ∆

Remark: 
If corresponding elements of any two rows (or columns) of a determinant are 
proportional (in the same ratio), then its value is zero. For example

11 12 13

21 22 23 1 2

31 32 33

0 ( and are proportional)
ka ka ka
a a a R R
a a a

∆ = =

Example: 

Evaluate 
102 18 36

1 3 4
17 3 6

∆ =

Solution: 

102 18 36 6(17) 6(3) 6(6)
1 3 4 6 1 3 4 0

17 3 6 17 3 6
∆ = = =

  determinants.

For example,

11 1 12 2 13 3 11 12 13 1 2 3

21 22 23 21 22 23 21 22 23

31 32 33 31 32 33 31 32 33

a k a k a k a a a k k k
a a a a a a a a a
a a a a a a a a a

+ + +
= +

 
Example: 

  Evaluate 2 2 2
a b c

a x b y c z
x y z

+ + + .
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Solution: 

We have 2 2 2
a b c

a x b y c z
x y z

+ + + =   

2 2 2 0 0 0(From Prop 3& 4)
a b c a b c
a b c x y z
x y z x y z

+ = + =

1.  For example, 

11 12 13 11 31 12 32 13 33

21 22 23 1 21 22 23

31 32 33 31 32 33

1

and

Then

aa a a a ka a ka a ka
a a a a a a
a a a a a a

+ + +
∆ = ∆ =

∆ = ∆

Let 

11 12 13 11 31 12 32 13 33

21 22 23 1 21 22 23

31 32 33 31 32 33

1

and

Then

aa a a a ka a ka a ka
a a a a a a
a a a a a a

+ + +
∆ = ∆ =

∆ = ∆

Example:

1. Evaluate the determinant of the following

42 1 6 6 3 2
( ) 28 7 4 ( ) 2 1 2

14 3 2 10 5 2
i ii

−   
   −   
   −   

Solution:

(i) 1

1 3

42 1 6 6 7 1 6 6 1 6
28 7 4 4 7 7 4 7 4 7 4 [Taking out 7 common from C ]
14 3 2 2 7 3 2 2 3 2

7 0 0 [ and are identical]c c

×
= × =

×

= × = 

 

[ ]

2

1

1

6 3 2 3 ( 2) 3 2
( ) 2 1 2 1 ( 2) 1 2 Taking out -2common from c

10 5 2 5 5 2

3 3 2
( 2) 1 1 2

5 5 2
( 2) 0 [ and are identical]

0

ii

c c

− − × − −
− = − × − −

−

− −
= − − −

= − ×

=
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2.Evaluate the determinant 
1
1 .
1

a b c
b c a
c a b

+
+
+

Solution:

3.Without expanding the determinant, Prove that 3

3 2
4 3 3 3
5 6 4 6

x y x x
x y x x x
x y x x

+
+ =
+

Solution: 

[ ]

[ ]

3 2

3 2
1 2

3
2 2 1 3 3 2

3

3 2 3 2 2
L.H.S= 4 3 3 3 4 3 3 3 3 3

5 6 4 6 5 4 6 6 4 6

3 2 1 1 2 1
4 3 3 3 3 3
5 4 6 6 4 6

3 2 1
4 3 3 0 and areidentical in II determinant
5 4 6

1 2 1
1 3 3 Applying R R
1 4 6

(3 2) [Expa

x y x x x x x y x x
x y x x x x x y x x
x y x x x x x y x x

x x y

x x y c c

x R R and R R

x

+
+ = +
+

= +

= + ×

= → − → −

= × −



1
3

nding along c ]
. .x R H S= =DDE, P
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[ ]

2

1 1 2 3

1

4. Prove that ( )

Solution:

L.H.S=

Applying c

1
( ) 1

1
[Taking (x+a+b+c) common from c ]

1
( ) 0 0

0 0

Apply

x a b c
a x b c x x a b c
a b x c

x a b c x a b c b c
a x b c x a b c x b c
a b x c x a b c b x c

c c c

b c
x a b c x b c

b x c

b c
x a b c x

x

+
+ = + + +

+

+ + + +
+ = + + + +

+ + + + +

→ + +

= + + + +
+

= + + +

[ ]2 2 1 3 3 1

1

2 2

ing R and R
      Expanding along C , weget

( ) 1( ) ( ) R.H.S

R R R R

x a b c x x x a b c

→ − → −

 + + + = + + + = 

     

Using properties of determinants, prove that 

9
9 243( 3).

9

x x x
x x x x
x x x

+
+ = +

+
Solution:

1 1 2 3

2 2 1 3 3 2

1

9
. . 9

9

3 9
3 9 9 [Applying c c +c +c ]
3 9 9

1
(3 9) 1 9

1 9

1
3( 3) 0 9 0 [Applying R R -R and R R -R ]

0 9 9
3( 3) 81 [Expanding along C ]
24( 3)
R.H.S

x x x
L H S x x x

x x x

x x x
x x x
x x x

x x
x x x

x x

x x
x

x
x

+
= +

+

+
= + + →

+ +

= + +
+

= + → →
−

= + ×
= +
=

2.
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Exercise: 
Evaluate the determinant of the following 

23 1 2 5 2 0
os sin 1 1

( ) 0 0 1 ( ) ( ) ( ) 1 3 2
sin cos 1 1

3 5 0 4 0 1

c x x x
i ii iii iv

x x
θ θ
θ θ

− −
− − + −

− −
+ +

−

1 0 1
If A= 0 1 2 then show that 3 27 .

0 0 4
A A

 
  = 
  

Find the determinant of the following matrices

2

1 1 2 1 7 3 2 1 2
5

( ) 2 1 3 ( ) ( ) 4 5 6 ( ) 1 2 0
4

5 4 9 2 1 0 2 3 0

x x
i ii iii iv

x x

− −     
−      − −      +      −     

4.Find the values of x,if 

2 4 2 4 2 3 3
( ) ( )

5 1 6 4 5 2 5
x x

i ii
x x

= =

Answers

  

3 2

3 2

1.( ) 12 ( )1 ( ) 2 ( ) 1
3.( )0 ( ) 2 ( )120 ( ) 2

4.( ) 3 ( )2

i ii iii x x iv
i ii x x x iii iv

i ii

− − + −

+ − − −

±

2.1.13 Inverse of a Matrix

Minor of an element: 
Consider a square matrix A of order n. Let  ij m n

A a
×

 =  
The matrix is also can be written as

11 12 13 14 1 1

21 22 23 24 2 2

1 2 3 4

1 2 3 4

.... ...

....
.... .... .... .... ....... ......

.....

....

j n

j n

i i i i ij in

n n n n nj mn

a a a a a a
a a a a a a

A
a a a a a a
a a a a a a

 
 
 
 =
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Example:

Consider 

Example:

(b) Cofactor of an element: 

Example: 

11 12 13

21 22 23

31 32 33

11 11

11 12
11

21 22

12 12

11 13
12

31 33

Minor of an element

( . )

Similarly
Minor of an element

a a a
A a a a

a a a
M a

a a
i e M

a a

M a
a a

M
a a

 
 =  
  
=

=

=

=

11 12 13

21 22 23

2 5 8
1 3 2
0 4 6

3 2 1 2 1 3
, ,

4 6 0 6 0 4

5 8 2 8 2 5
, ,

4 6 0 6 0 4

A

M M M

M M M

 
 =  
  

= = =

= = =

11 12 13

21 22 23

31 32 33

22 231 1
11 11

32 33

21 231 2
12 12

31 33

211 3
13 13

Let

( 1) , is the minor of a

Thecofactor of a ( 1)

Thecofactor of a ( 1)

Thecofactor of a ( 1)

ij m n
i j

ij ij ij ij

A a

C M M

a a a
If A a a a

a a a

a a
C

a a

a a
C

a a

a
C

×

+

+

+

+

 =  
= −

 
 =  
  

= = −

= = −

= = − 22

31 32

andsoon.

a
a a

1 1
11 11

1 2
12 12

1 3
13 13

21 22 23 31 32 33

1 3 4
0 2 1
3 7 6

2 1
Thecofactor of a ( 1) 5

7 6

0 1
Thecofactor of a ( 1) 3

3 6

0 2
Thecofactor of a ( 1) 6

3 7
Similarly, we get
C 10,C 6,C 9,C 3,C 1,C 2

IfA

C

C

C

+

+

+

 
 =  
  

= = − =

= = − =

= = − = −

= = − = = − = − =
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1 1
11 11

1 2
12 12

1 3
13 13

21 22 23 31 32 33

1 3 4
0 2 1
3 7 6

2 1
Thecofactor of a ( 1) 5

7 6

0 1
Thecofactor of a ( 1) 3

3 6

0 2
Thecofactor of a ( 1) 6

3 7
Similarly, we get
C 10,C 6,C 9,C 3,C 1,C 2

IfA

C

C

C

+

+

+

 
 =  
  

= = − =

= = − =

= = − = −

= = − = = − = − =
(c) Cofactor Matrix:

A matrix ijC C =    
where ijC denotes cofactor of the element a

ij of a matrix A 

of  order nxn, is called a cofactor matrix.

In above matrix A, cofactor matrix is 
5 3 6

10 6 9
3 1 2

C
− 

 = − 
 − − 

(d) Adjoint of Matrix: 

If A is any square matrix then transpose of its cofactor matrix is called 

Adjoint of A. Adjoint of A = (cofactor of matrix)T

2.1.14 Inverse of a Matrix (or) Reciprocal Matrix:
 
(a) Invertibility:
 
  A matrix is invertible if it has an inverse. An inverse of a matrix A is 
denoted as  1A− and satisfies the property that when multiplied with the original 
matrix A, it results in the identity matrix, denoted as I. An invertible matrix 
represents a transformation that preserves the properties of the original space, 
allowing for a unique solution to systems of equations. In practical terms, an 
invertible matrix can be used to solve linear equations and perform various 
mathematical operations.

11 21 31

12 22 32

13 23 33

Adjoint of a matrix A is denoted as AdjA. Thus if
1 3 4 5 10 3

A= 0 2 1 then Adj A= 3 6 1
3 7 6 6 9 2

Note:

A= , then Adj A

C C C
A

a

dj C C C

b d b
c d c a

C C C

−   
   − −   
   −   

−   
=   

 
 =



−
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 The invertibility of a matrix is closely related to its singularity. A matrix 
is invertible if and only if it is non-singular or non-degenerate, meaning its 
determinant is non-zero. If the determinant of a matrix is zero, it is singular, 
and it does not have an inverse. In other words, invertibility and singularity 
are opposite properties of matrices.

(b) Inverse of the Matrix:

If A is a non-singular matrix 1 AdjA
A

  is defined to be the reciprocal of the 

matrix A or the Inverse of the matrix A. It is denoted by 1A−

1  . 1A
A

Adj A− =

Symbolically, it can be shown that 1 1AA A A I− −= = .

Example 

1. Find the minor and cofactor of 7 in the matrix .

Solution:

The give matrix is 
3 7 4
2 6 3
3 5 1

A
 
 =  
 − 

We need to find the cofactor of 7

Cofactor of [ ] [ ]1 2 32 3
7 ( 1) ( 1) 2(1) 3( 3) ( 1) 2 9 11

3 1
+  

= − = − − − = − + = − − 

Therefore, the cofactor of 7 is -11.

Example 2.

Find the cofactor matrix for the matrix 
3 0 4
2 1 3 .
3 5 1

 
 − 
 − 

Solution:

The given matrix is 
3 0 4
2 1 3
3 5 1

A
 
 = − 
 − 

Cofactor of [ ] [ ]1 1 21 3
3 ( 1) ( 1) ( 1) 1 3 5 (1) 1 15 16

5 1
+ − 

= − = − − × − × = − − = − 
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Cofactor of [ ] [ ]1 2 32 3
0 ( 1) ( 1) (2) 1 3 ( 3) ( 1) 2 9 11

3 1
+  

= − = − × − × − = − + = − − 

Cofactor of [ ] [ ]1 3 42 1
4 ( 1) ( 1) (2) 5 ( 1) ( 3) (1) 10 3 7

3 5
+ − 

= − = − × − − × − = − = − 

Cofactor of [ ] [ ]2 1 30 4
2 ( 1) ( 1) (0) 1 (4) (5) ( 1) 0 20 20

5 1
+  

= − = − × − × = − − = 
 

Cofactor of [ ] [ ]2 2 43 4
1 ( 1) ( 1) (3) 1 ( 3) (4) (1) 3 12 15

3 1
+  

− = − = − × − − × = + = − Cofactor of        

[ ] [ ]2 3 53 0
3 ( 1) ( 1) (3) 5 (0) ( 3) ( 1) 15 0 15

3 5
+  

= − = − × − × − = − − = − − 

Cofactor of - [ ] [ ]3 1 40 4
3 ( 1) ( 1) (0) 3 (4) ( 1) (1) 0 4 4

1 3
+  

= − = − × − × − = + = − 

Cofactor of [ ] [ ]3 2 53 4
5 ( 1) ( 1) (3) 3 (4) (2) ( 1) 9 8 1

2 3
+  

= − = − × − × = − − = − 
 

Cofactor of [ ] [ ]3 3 63 0
1 ( 1) ( 1) (3) 1 (0) (2) (1) 3 0 3

2 1
+  

= − = − × − − × = − − = − − 
Therefore, the cofactor Matrix of given matrix 

      
16 11 7

20 15 15
4 1 3

A
− − 

 = − 
 − − 

Example 3:

Find the minor of the matix, such that the given matrix is 2 4
.

3 5
 
 − 

2 4
.

3 5
 
 − 

Solution: 

Let the given matrix be 
2 4
3 5

A  
=  − 

.

Let us now find the minor of each of each element of this matix.

Minor of 2=5

(Element 2 is in the first row and the first column of the matrix. After excluding 
the first row and the first column we are left with element 5). row and the 
second column we are left with elements
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Minor of 4=-3 

(Element 4 is in the first row and the second column of the matrix. After 
excluding the first row and the second column we are left with element -3).

Minor of -3 =4

(Element -3 is in the second row and the first column of the matrix. After 
excluding the second row and the first column we are left with element 4).

Minor of 5 =2

(Element 5 is in the second row and the second column of the matrix. After 
excluding the second row and the second column we are left with element 2).

Hence the Minor of Matrix 
5 3

.
4 2

A
− 

=  
 

Example 4: 

Find the Co-factor matrix and the adjoint matrix for the given matrix   

         
5 9 2
1 8 5
3 6 4

 
 
 
  

.

Solution: 

The given matrix is 
5 9 2
1 8 5
3 6 4

 
 
 
  

.

Let us now first find the co-factors of each of the elements of the above matrix. 

Co-factor of 

1 2 1 5
9 ( 1) (1(4) 3(5)) (4 15) 11.

3 4
+= − = − − = − − =

Co-factor of 

1 2 1 5
9 ( 1) (1(4) 3(5)) (4 15) 11.

3 4
+= − = − − = − − =

Co-factor of 

1 3 1 8
2 ( 1) (1(6) 3(8)) 6 24 18.

3 6
+= − = − − = − = −

Co-factor of 
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2 1 9 2
1 ( 1) (9(4) 2(6)) (36 12) 24.

6 4
+= − = − − = − − = −

Co-factor of 

2 2 5 2
8 ( 1) (5(4) 3(2)) 20 6 14.

3 4
+= − = + − = − =

Co-factor of 

3 1 9 2
3 ( 1) (9(5) 2(8)) 45 16 29.

8 5
+= − = + − = − =

Co-factor of 

3 1 9 2
3 ( 1) (9(5) 2(8)) 45 16 29.

8 5
+= − = + − = − =

Co-factor of 

3 2 5 2
6 ( 1) (5(5) 1(2)) (25 2) 23.

1 5
+= − = − − = − − = −

Co-factor of 

3 3 5 9
4 ( 1) (5(8) 1(9)) 40 9 31.

1 8
+= − = + − = − =

Co-factor Matrix= 
2 11 18
24 14 3

29 23 31

− 
 − − 
 − 

Adjoint  Matrix=
2 24 29

11 14 23
18 3 31

− 
 − 
 − − 

.

Example 5: 

Find the minor of the element 5 in the matrix 
2 3 7
4 5 1
6 0 4

− 
 
 
 − 

.

Solution: 

Let the given matrix be 
2 3 7
4 5 1
6 0 4

A
− 

 =  
 − 
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 The aim is to find the minor of element 5. Element 5 lies in the 
second row and second column. Hence after excluding the elements of 
the second row and second column, we obtain the minor of element 5. 

Example 6: 

Find the co-factor matrix of the matrix 
4 7
11 9

− 
 − 

.

Solution: 

The given matrix 
4 7
11 9

− 
 − 

represents a 2 2×  matrix.

For a matrix 
a b

A
c d

 
=  

 
, the co-factor matrix of A=. 

d c
b a

− 
 −  

Hence the co-factor matrix of the given matrix is = 
9 11
7 4

 
 − − 

.

2.1.15 Properties of Inverse of a Matrix

If A is non-singular matrix, then 1 1( )A A− − = is non-singular and 1 1( )A A− − = .

If A is non-singular matrix, then TA is non-singular and 1 1( ) ( )T TA A− −= .

If A and B both are non-singular matrices, then AAB is non-singular and 
1 1 1( ) .AB B A− − −=

If A is non-singular matrix, then 1A− is non-singular and det. 1 1( )
det( )

A
A

− =

Example 1:

Find 1P− ,if it exists, where 
2 1
7 4

P  
=  

 
.

Solution:
1

1

2 1
8 7 1

7 4

Now, ( ) ( )

4 7 4 1
( )

1 2 7 2

4 1
4 17 2
7 21

T

T
T

adjPP
P

P

adj P cofactor P

cofactor P

adjPP
P

−

−

=

= = − =

=

− −   
= =   − −   

− 
  −−   = = =  − 
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Example 2:  

Find 1A− ,if it exists, where 
2 1
4 2

A  
=  

 
.

Solution:

 
A

Example 3: 

Find the inverse of  A=
25 5 1

[ ] 64 8 1
144 12 1

A
 
 =  
  

.

 
Solution: 

The cofactors of entry 11a is 1 1
11 11 11( 1) 4C M M+= − = = −  

The minor of entry 12a is 12

25 5 1
64 1

64 8 1 80
144 1

144 12 1
M = = = −

The cofactors of entry 12a is 1 2
12 12 12( 1) ( 80)C M M+= − = − = − − .

Hence, the matrix of cofactors of 

The adjoint of matrix [ ] [ ] [ ]
4 7 3

is , ( ) 80 119 39
384 420 120

T TA C adj A C
− − 

 = = − 
 − − 

1

1

2 1
Now, 4 4 0

4 2

Since, 0, does not exist.

adjAA
A

A

A A

−

−

=

= = − =

=

13

21

22

23

31

32

33

384
7

119
420

3
39

120

C
C
C
C
C
C
C

= −

=
= −
=
= −
=
= −
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Hence,

          =
0.04762 0.08333 0.03571

0.952 1.417 0.4643
4.571 5.000 1.429

− 
 − − 
 − 

Exercise: 

1. What is the minor of 5 in the matrix 
4 3 0
1 5 2 ?
3 2 1

 
 
 
  

(a)  2   (b) 3  (c) 4  (d) 6

2. What is the cofactor of 2 in the matrix 
4 3 0
1 5 2 ?
3 2 1

 
 
 
    (a) 4   (b) 1  (c) 2  (d) -1

3.What is the minor of the element -2 in the matrix 
3 4
7 2

 
 − 

            (a) -2   (b) 7  (c)  4   (d) 3

4.What is the minor of the element 5 in the matrix 
3 4 5
0 7 2 ?
6 4 1

− 
 − 
  

            (a) -42   (b) 42  (c)  38   (d) -46

5. What is the cofactor of 6 in the matrix 
4 3 2
1 7 5 ?
0 6 11

 
 
 
  

                (a)  22   (b) -20  (c)  18   (d) -18

  Answer 1. (c),  2. (b),  3. (d),  4. (a),  5. (d)

[ ] 1
4 7 3

1 1( ) 80 119 39
det( ) 84

384 420 120
A adj A

A
−

− − 
 = = − −
 − − 
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2.1.16 Self Assesment Questions

1.If A is a non-singular matrix such that ( ) 11 5 3
, then find .

2 1
TA A

−−  
=  − −    .

       

1 5 2
Ans:( )

3 1
TA − −  

=  −  

2. Prove that  

2 2

2 2 2 2 2

2 2

4
a bc ac c

a ab b ac a b c
ab b bc c

+
+ =

+

3.Determine the value of x+y if 
2 4 7 7 13
5 7 4 6

x y x y
x x y x

+ −   
=   − +   

.

 
    [Ans: x+y=5]

4. What is the cofactor of element 4 in the determinant 
1 2 3
4 5 6
5 8 9

.

 
      [Ans: Cofactor of element 4 is 6]

 5. Find the inverse of  
1 2 1
2 1 2
1 2 1

A
− 

 =  
 − 

.
 

            1

3 / 16 4 / 16 5 / 16
Ans : 4 / 16 0 / 16 4 / 16

5 / 16 4 / 16 3 / 16
A−

 − − − − −  
  = − − − − −  
  − − − − −  
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2.1.17 Summary

1.Matrix: A system of  numbers arranged in the form of an ordered set 

of  horizontal lines called rows &  vertical lines called columns is called an 
 matrix. The matrix of order  is written as

  

2.Types of matrix

  ➢ Rectangular matrix: Any  Matrix where  is called 
rectangular matrix

  ➢ Column Matrix :It is a matrix in which there is only one column.  

  ➢ Row Matrix:It is a matrix in which there is only one row.

  ➢ Square Matrix: It is a matrix in which the number of rows equals 
the number of columns.

  ➢ Diagonal Matrix:It is a square matrix in which all non-diagonal 
elements are zero.

  ➢ Scalar Matrix: It is a square diagonal matrix in which all diagonal 
elements  are equal.

  ➢ Unit Matrix: It is a scalar matrix with diagonal elements as unity 
and is  denoted by I.

  ➢ Null matrix (or) zero matrix:In a matrix, if all the elements are 
zero, then the matrix is called a null matrix or zero matrices and is 
denoted by O.

  ➢ Upper Triangular Matrix:It is a square matrix in which all the 
elements below the principle diagonal are  zero.

  ➢ Lower Triangular Matrix:It is a square matrix in which all the 
elements above the principle diagonal are  zero.

  ➢ Transpose of Matrix:It is a matrix obtained by interchanging rows 
into columns or columns into rows.

  ➢ Symmetric Matrix: If for a square matrix A, A = AT  then A is 
symmetric.
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  ➢ Skew Symmetric Matrix : If for a square matrix A, A = - AT  then it 
is a skew-symmetric 

Orthogonal matrix:If a square matrix satisfies the relation TAA I= then the 
matrix A is called an orthogonal matrix. & AT = A-1 

3. Matrix Operations:

  ➢ Addition and Subtraction of matrices:

Two matrices are considered conformable for addition when they have the 
same size. (Number of rows equal to the number of columns.

Thus if , ,and = are i j i jA a B b m n   = ×    then they can be added, and their 

sum is the matrix  11 12 11 12 11 11 12 12

21 22 21 22 21 21 22 22

a a a a a b a b
A B

a a a a a b a b
+ +     

+ = + =     + +     

Similarly, 

       

11 12 11 12 11 11 12 12

21 22 21 22 21 21 22 22

a a a a a b a b
A B

a a a a a b a b
− −     

− = − =     − −     

  ➢ Multiplication of matrix by a scalar:

The product of a matrix A by a scalar k is a matrix whose each element is k 
times the corresponding elements of A.

Properties of Multiplication of Matrices:

4.Transpose of a Matrix:

 The transpose of a matrix is a new matrix that is obtained by 
interchanging its rows and columns. In other words, if A is an   m n×   matrix, 
then the transpose of A , denoted as TA , is an   m n×  matrix. Formally, the i, 
j-th entry of the transpose of A , denoted as ( )T

ijA , is equal to the j, i-th entry 
of A , i.e., ( )T

ij jiA A=

Properties of transpose:

1. ( )T TA A= : The transpose of the transpose of a matrix is the original 
matrix itself.

( )
)

1.
2.  

( ) ( )

3.  
4.

(
A BC AB C
A B C AB AC
B C A BA CA

AB BA

=
± = ±

+ = +

≠
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2. ( )T T TA B A B+ = +  The transpose of a sum of matrices is equal to 
the sum of their transposes.

3. ( )T TkA kA= : The transpose of a scalar multiple of a matrix is equal       
to the scalar multiple of the transpose of the matrix.

4. ( )T T TAB B A= The transpose of a product of matrices is equal to 
the product of their transposes in reverse order.

 5. Determinant of a matrix: 

To every square matrix ij m n
A a

×
 =   we can associate a number (real or 

complex) called determinant of the square matrix A, where ( , )
th

ija i j=
element of A. 

If A be a square matrix then A = determinant of A (i.e)   det A A= .

    
If ( ) 0 Matrix A is called Singular Matrix.

(ii) 0, Matrix A is called Non-Singular Matrix

i A

A

= ⇒

≠ ⇒

Properties of Determinants:

Property:1 The value of the determinant remains unchanged if its rows and 
columns are interchanged.

Property:2 If any two rows (or columns) of a determinant are interchanged, 
then sign of determinant changes.

Property: 3 If any two rows (or columns) of a determinant are identical) (all 
corresponding elements are same), then value of determinant is zero.

Property:4 If each element of a row (or a column) of a determinant is 
multiplied by a constant k, then its value gets multiplied by k.

Property:5 If some or all elements of a row or column of a determinant are 
expressed as sum of two (or more) terms, the determinant can be expressed as 
sum of two (or more).

Property:6 If, to each element of any row or column of a determinant, 
the equimultiples of corresponding elements of other row(or 
column) are added, then value of determinant remains the same, 
i.e., the value of determinant remain same if we apply the operation 

      .( )Ri Ri kRj or Ci Ci kCj→ + → +

6.Inverse of a matrix:
  ➢ Minor of an element:
  ➢ The matrix is also can be written as
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11 12 13 14 1 1

21 22 23 24 2 2

1 2 3 4

1 2 3 4

.... ...

....
.... .... .... .... ....... ......

.....

....

j n

j n

i i i i ij in

n n n n nj mn

a a a a a a
a a a a a a

A
a a a a a a
a a a a a a

 
 
 
 =
 
 
  

Example:

Consider 

 
 
Cofactor of an element: 

Adjoint of Matrix: 

If A is any square matrix then transpose of its cofactor matrix is called 
Adjoint of A. Adjoint of A = (cofactor of matrix) T

11 12 13

21 22 23

31 32 33

11 11

11 12
11

21 22

12 12

11 13
12

31 33

Minor of an element

( . )

Similarly
Minor of an element

a a a
A a a a

a a a
M a

a a
i e M

a a

M a
a a

M
a a

 
 =  
  
=

=

=

=

11 12 13

21 22 23

31 32 33

22 231 1
11 11

32 33

21 231 2
12 12

31 33

211 3
13 13

Let

( 1) , is the minor of a

Thecofactor of a ( 1)

Thecofactor of a ( 1)

Thecofactor of a ( 1)

ij m n
i j

ij ij ij ij

A a

C M M

a a a
If A a a a

a a a

a a
C

a a

a a
C

a a

a
C

×

+

+

+

+

 =  
= −

 
 =  
  

= = −

= = −

= = − 22

31 32

andsoon.

a
a a
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11 21 31

12 22 32

13 23 33

Adjoint of a matrix A is denoted as AdjA. Thus if
1 3 4 5 10 3

A= 0 2 1 then Adj A= 3 6 1
3 7 6 6 9 2

Note:

A= , then Adj A

C C C
A

a

dj C C C

b d b
c d c a

C C C

−   
   − −   
   −   

−   
=   

 
 =



−
















Inverse of the Matrix:

If A is a non-singular matrix 1 AdjA
A

 is defined to be the reciprocal of the 

matrix A or the Inverse of the matrix A. It is denoted by 1A−

   

1  . 1A
A

Adj A− =

Symbolically, it can be shown that 1 1AA A A I− −= = .
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UNIT – III

Lesson 3.1- Introduction to Vectors

Structure

3.1.1  Objectives:

3.1.2   Introduction:

3.1.3   Vectors

3.1.4   Inner Product Spaces

3.1.5   Theorems

3.1.6   Orthogonality

3.1.7   Gram Schmidt Orthogonalization Process:

3.1.8   Linear Combination

3.1.9   Convex Combination

3.1.10 Self Assessment Question

3.1.11  Summary

3.1.1 Objectives:

  ➢ Define two, three, and n-dimensional row and column vectors.

  ➢ Interpret and explain vector addition and scalar multiplication in 
the context of vectors.

  ➢ Define the length of a vector and how to compute it.

  ➢ Define scalar products and their properties.

  ➢ Explain the properties and applications of scalar products and 
orthogonality

  ➢ Define linear combinations of vectors.

  ➢ Describe the properties and applications of convex combinations 
of vectors.

3.1.2 Introduction

 Vectors and matrices are notational conveniences for dealing with 
systems of linear equations and in particular, they are useful for compactly 
representing and discussing the linear programming

DDE, P
on

dic
he

rry
 U

niv
ers

ity



Notes

84

subject to:

 

 This appendix reviews several properties of vectors and matrices that 
are, especially real problems. We should note, however, that the material 
contained here is more technical than understanding the rest of this book. It 
is included for completeness rather than for background.

3.1.3  Vectors

We begin by defining vectors, relations among vectors, and elementary 
vector operations. 
Definition. A -dimensional vector  is an ordered collection of  
real numbers  written as . The numbers 

 are called the component vector . 

Each of the following are examples of vectors:

1.  is a four-dimensional vector. Its first component is 1 , 
its second component is third and fourth components are 0 and 5 , 
respectively.

2. The coefficients  of the linear-programming objective 
function determine the  vector 

3. The activity levels  of a linear program define the 
-dimensional vector , ).

4. The coefficients  of the decision variables in the 
 th equation of a linear program an -dimensional vector 

.

5. The coefficients  of the decision variable  
in constraints 1 through  of a linear program define an 
-dimensional vector which we denote as . 
Equality and ordering of vectors are defined by comparing the 
vectors' individual components. Formally, let  
and  be two -dimensional vectors.
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We write:

and say, respectively, that  equals  is greater than or equal to  and that  
is greater than . In the last two cases, we also say that  is less than or equal 
to  and less than . It should be emphasized that not all vectors are ordered. 
For example, if  and , then the first two components 
of  are greater than or equal to the first two components of  but the third 
component of  is less than the corresponding component of .

Note: 0 is used to denote the null vector , where the dimension 
of the vector is understood from context. Thus, if  is a -dimensional 
vector,  means that each component  of the vector  is nonnegative. 
We also define scalar multiplication and addition in terms of the components 
of the vectors.

Definition: 

 Scalar multiplication of a vector  and a 
scalar  is defined to be a new vector , written 

 or , whose components are given by . 

Definition:

 Vector addition of two -dimensional vectors  and 
 is defined as a new vector , denoted 

, with components given by .As an example of scalar 
multiplication, consider

   

and for vector addition,

        

Using both operations, we can make the following type of calculation:

It is important to note that  and  must have the same dimensions for vector 
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addition and vector comparisons. Thus  is not defined, and 
 makes no sense at all.

Let  denote a set of real numbers. All real numbers are located at a 
straight line take position. By  we denote the set of all ordered pairs of 
real numbers.  may be regarc we can associate a point in the plane with 
each ordered pair.  may also be taken as matrices. Thus, the elements 
of  may just be considered vectors and thus  may be defined vectors 
in the plane. Now it is obvious that if  is a vector in a plane then it can 
express  or  or  so we can use the three representations 
of  interchangeably. Similarly, all the vectors in space. Thus if  is any 
vector in space, then it also can be written in three different ways as

Sometimes, we may call  as the set of all 2-vector or 2-tuples or ordered 
pairs and  as th or 3 -tuples or ordered triads. Similarly,  is the set of all 
-vectors or -tuples. Note that following may be taken as a vector: a polynomial, 
a matrix, a function, a number (real, rational,complex) and a sequence. 
The following two operations are used in defining the vector space so we firstly 
study them

1 Addition of vectors: 

Addition in , 

If  and  are two vectors in , then

 

             Addition in , 

             If  and  are two vectors in , then 

 

              Addition in ,

If  and  are two vectors in , 

then
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2 Scalar multiplication 
Scalar multiplication in  : 
Let  be any scalar and  be any vector in  then

 

             Scalar multiplication in  : 

            If  be any vector in , then

 

             Scalar multiplication in  :

             If  be any vector in , then

 

Definition:

     1    Set  is called a vector space over a field  if the operations "addition 
of vectors" (denoted by +) and scalar multiplication (denoted by .) are defined 
such that the following properties hold:

o is a binary operation, i.e.  for all .

o is associative, i.e.  for all 

  .
o is commutative , i.e.  for all .

1 Additive identity: There exists  such that  
for all .

2 Additive inverse: To each element  of  there is an element  in  
such that . Then  is the additive inverse of .It is denoted 
by .

3 Scalar multiplication is well defined i.e.  and 

5 Additive inverse: To each element  of  there is an element  in  
such that  the additive inverse of .It is denoted by 

.

6 Scalar multiplication is well defined i.e.  and 

7  and 
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8  and 

9  and 

 Scalar multiplication in  over the field  :For any scalar  and 
, we define 

Since  are all real numbers, there  and thus scalar 
multiplication is well defined. Now, we verify all the axioms of a vector space.

For  and 

 in  and  in .

1 Addition of vectors is a binary operation: We have

 

Since  are all real numbers, therefore 

          . 

     Thus  is closed under the composition addition of vectors.

2. Addition of vector is associative: We have

 Thus the composition "addition of vectors" is associative.

3. Addition of vectors is commutative We write

   Thus "addition of vectors" is a commutative composition.

4. Additive identity: We have  such that

 

   for any .

   Therefore  is the additive identity in .
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5 Additive inverse: For , there is an 
element , in  such that

Therefore  is the additive inverse of . Thus  
is an abelian group with respe vectors' composition. 
Now we try to prove remaining four properties of vector space.

      6.

            Thus  
       7.

                            Thus .

      8.

                                     Thus . 
      9.

                                Thus . 

Hence  is a vector space over the field . 

Note:

As of , we can show that  are vector space over . 
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The following are some problems for students to examine whether they are 
vector spaces or not:

1 The set  of all  matrices with their elements as real numbers 
with respect to addition of matrices as addition of vectors and 
multiplication of a matrix by a scalar as scalar multiplication.

2 Let  be the field of real numbers and let  be the set of all polynomials 
of degree at most  over the field .

3 Let  be the set of all pairs  of real numbers and 
let  be the field of real numbers with the operations 
Addition of vectors    
Scalar multiplications                              

3.1.4 Inner Product Spaces

        An  inner product space  or a  Harsdorf  pre-Hilbert space is a  vector 
space  with an additional  structure  called an  inner product.  This additional 
structure associates each pair of vectors in the space with a  scalar quantity 
known as the inner product of the vectors, often denoted using angle brackets. 
Inner products allow the rigorous introduction of intuitive geometrical 
notions, such as the length of a vector or the angle between two vectors. They 
also provide the means of defining  orthogonality between vectors (zero inner 
product).  Inner product spaces generalize  Euclidean spaces  (in which the 
inner product is the dot product, also known as the scalar product) to vector 
spaces of any (possibly infinite)  dimension, and are studied in  functional 
analysis. Inner product spaces over the field of complex numbers are sometimes 
referred to as unitary spaces. The first usage of the concept of a vector space 
with an inner product is due to Giuseppe Peano, in 1898.

a)  Inner Product Space:

An inner product on a vector space ( )V F  is a function that assigns, to every 
ordered pair of vectors , ,u v V∈  a scalar in F  such that , ,u v w V∀ ∈  and 

, Fα β∀ ∈  the following axioms hold.

 , ,u v v u〈 〉 = 〈 〉 , where the bar denotes the complex conjugation

, , ,u v w u w v w〈 + 〉 = 〈 〉 + 〈 〉

, ,u v u vα α〈 〉 = 〈 〉
.

, 0 and , 0 if and only if 0u u u u u〈 〉 ≥ 〈 〉 = =
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A vector space ( )V F  with an inner product on it is called an inner product 
space.

(a) Norm or length of a vector

Let be an inner product space.  For v V∈ , we define the norm or length of v  

by . ,v v v= 〈 〉

The vector v is called a unit vector if 1v = .

(b) Orthogonal Vectors

Let be an inner product space.  The vectors u and v  in V are orthogonal (or 
perpendicular) if . , 0u v〈 〉 =

A subset S of V is orthogonal if any two distinct vectors in S  are orthogonal.

Example: 1

Let 3( ) ( )V F R R= be a vector space. 1 2 3 1 2 3( , , ), ( , , )u a a a v b b b∀ = =  defined 

by 
1 2 3 1 2 3 1 2 3( , , ), ( , , ) and ( , , )u a a a v b b b w c c c= = = , Verify it is an inner product space.

Solution:

Let 1 2 3 1 2 3 1 2 3( , , ), ( , , ) and ( , , )u a a a v b b b w c c c= = =

Example:2

Let 1 2 3 1 2 3( , , ,..., ), ( , , ,..., ) ( )n
n nu a a a a v b b b b F C= = ∈ . Define .  

1 1 2 2 3 3, ... n nu v a b a b a b a b〈 〉 = + + + +  Verify that it is an inner product of 

( ).nF C

1 1 2 2 3 3

1 1 2 2 3 3

( ) , , [Sinceits real]

, ,

i u v u v a b a b a b
b a b a b a

u v v u

〈 〉 = 〈 〉 = + +
= + +

〈 〉 = 〈 〉

1 1 2 2 3 3
2 2 2

1 2 3

2 2 2
1 2 3 1 2 3

( ) ,

, 0 0
, 0 0 0, 0, 0 (0,0,0)

ii u u a a a a a a

a a a
u u u
u u a a a a a a u

〈 〉 = + +

= + +
〈 〉 > ∀ ≠

〈 〉 = ⇔ + + = ⇔ = = = ⇔ =

1 2 3 1 2 3 1 1 2 2 3 3

1 1 1 2 2 2 3 3 3

1 1 2 2 3 3 1 1 2 2 3 3

3

( ) ( , , ) ( , , ) ( , , )
, ( ) ( ) ( )

( ) ( )
, , ,

( ) is an inner product space.

iii u v a a a b b b a b a b a b
u v w a b c a b c a b c

a c a c a c b c b c b c
u v w u w v w
V R R

α β α β α β α β α β
α β α β α β α β

α β
α β α β

+ = + = + + +
〈 + 〉 = + + + + +

= + + + + +
〈 + 〉 = 〈 〉 + 〈 〉
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Solution:

1 2 3

1 2 3 1 2 3 1 1 2 2 3 3

1 1 1 2 2 2 3 3 3

1 1 2 2 3 3

( ) Let ( , , ,..., )
( , , ,..., ) ( , , ,..., ) ( , , ,..., )

, ( ) ( ) ( ) .... ( )

( ... ) (

n

n n n n

n n n

n n

iii w c c c c
u v a a a a b b b b a b a b a b a b

u v w a b c a b c a b c a b c

a c a c a c a c

α β α β α β α β α β α β

α β α β α β α β α β

α β

=

+ = + = + + + +

〈 + 〉 = + + + + + + + +

= + + + + + 1 1 2 2 3 3 ... )
, , ,

Hence , is an inner product space on ( )

n n

n

b c b c b c b c
u v w u w v w

u v F C
α β α β

+ + + +
〈 + 〉 = 〈 〉 + 〈 〉

〈 〉

Example:3

Let V be the set of all continuous real functions defined on the closed interval 

[0,1].  The inner product on V defined by ( ) ( ) ( ) ( )
1

0

,f x g x f t g t dt〈 〉 = ∫ .  

Prove that V(R) is an inner product space.

Solution:

( ) ( ) ( ) ( ) ( ) ( )
1 1 1

0 0 0

( ) , ,i f g f t g t dt g t f t dt g t f t dt g f〈 〉 = = = = 〈 〉∫ ∫ ∫

( ) ( ) ( )( )
1 1

2

0 0

( ) , 0, ( ) 0

and , 0iff ( ) 0, [0,1]

ii f f f t f t dt f t dt f t

f f f t t

〈 〉 = = ≥ ≠

〈 〉 = = ∀ ∈

∫ ∫

1 1 2 2 3 3

1 1 2 2 3 3

1 1 2 2 3 3

1 1 2 2 3 3

( ) , ...

...

...

...
,

n n

n n

n n

n n

i u v a b a b a b a b

a b a b a b a b

a b a b a b a b

b a b a b a b a
v u

〈 〉 = + + + +

= + + + +

= + + + +

= + + + +
= 〈 〉

1 1 2 2 3 3
2 2 2 2

1 2 3

( ) , ...

, ... 0 if 0
, 0 0

n n

n

ii u u a a a a a a a a

u u a a a a u
u u u

〈 〉 = + + + +

〈 〉 = + + + + ≥ ≠

〈 〉 = ⇔ =

( ) ( )( )

( ) ( )

1

0
1 1

0 0

( ) , ( )

( ) ( )

, , ,
, is an inner product space over 

iii f g h f t g t h t dt

f t h t dt g t h t dt

f g h f h g h
f g R

α β α β

α β

α β α β

〈 + 〉 = +

= +

〈 + 〉 = 〈 〉 + 〈 〉
∴〈 〉

∫
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Example: 4

Prove that 2 ( )R R  is an inner product space with the inner product defined 

by 1 1 2 1 1 2 2 2 1 2 1 2, 2 , ( , ) , ( , ).u v a b a b a b a b u a a v b b〈 〉 = − − + ∀ = =

Solution:

3.1.5  Theorems 

Theorem: 1

Let V be an inner product space.  Then for , , and ,u v w V Fα∀ ∈ ∈  the 
following statements are true.

( ) , , ,

( ) , ,

i u v w u v u w

ii u v u vα α

〈 + 〉 = 〈 〉 + 〈 〉

〈 〉 = 〈 〉

 
( ) ,0 0, 0
( ) If , , , then
iii u u
iv u v u w u V v w

〈 〉 = 〈 〉 =
〈 〉 = 〈 〉 ∀ ∈ =

1 1 2 1 1 2 2 2

1 1 2 1 1 2 2 2

1 1 1 2 2 1 2 2

( ) , 2
2
2

,

i u v a b a b a b a b
a b a b a b a b
b a b a b a b a
v u

〈 〉 = − − +
= − − +
= − − +
= 〈 〉

1 1 2 1 1 2 2 2
2 2 2

1 1 2 2 2
2 2

1 2 2
2 2

1 2 2 1 2 2 1 2

( ) , 2
2

, ( ) 0 f 0
, 0iff ( ) 0 0, 0 0 0

ii u u a a a a a a a a
a a a a a

u u a a a i u
u u a a a a a a a a u

〈 〉 = − − +

= − + +

〈 〉 = − + ≥ ≠

〈 〉 = − + = ⇔ − = = ⇔ = = ⇔ =

( )

1 2

1 2 1 2 1 1 2 2

1 1 2 2 1 2

1 1 1 2 2 1 1 1 2 2 2 2

1 1 2 1 1 2 2 2 1 1 2 1 1 2 2 2

( ) Let ( , ), ,
( , ) ( , ) ( , )

, , , ( , )
( ) ( ) ( ) 2( )

( 2 ) ( 2 )

iii w c c R
u v a a b b a b a b

u v w a b a b c c
a b c a b c a b c a b c
a c a c a c a c b c b c b c b c

u

α β
α β α β α β α β

α β α β α β

α β α β α β α β
α β

α

= ∈
+ = + = + +

〈 + 〉 = 〈 + + 〉

= + − + − + + +
= − − + + − − +

〈 +
2

, , ,
Hence ( ) is an inner product space

v w u w v w
R R

β α β〉 = 〈 〉 + 〈 〉
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Proof: 

( ) , ,

, ,

, ,
, , ,

( ) , ,

,

, ,

( ) ,0 ,0 0 , 0
0, 0 , 0 , 0

,0 0, 0
( )Consider, , , , using(i)

=

i u v w v w u

v u w u

v u w u
u v w u v u w

ii u v v u

v u

u v u v

iii u u v u v
u v u v u
u u

iv u v w u v u w

α α

α

α α

〈 + 〉 = 〈 + 〉

= 〈 〉 + 〈 〉

= 〈 〉 + 〈 〉
〈 + 〉 = 〈 〉 + 〈 〉

〈 〉 = 〈 〉

= 〈 〉

〈 〉 = 〈 〉

〈 〉 = 〈 〉 = 〈 〉 =
〈 〉 = 〈 〉 = 〈 〉 =

∴〈 〉 = 〈 〉 =
〈 − 〉 = 〈 〉 − 〈 〉

0 (given)
0 using(iii)v w

v w
⇒ − =
⇒ =

Theorem: 2

Let V be an inner product space over F, then  , and ,u v V Fα β∀ ∈ ∈ we have

Proof:

( )

( ) , ( )

( ) ( )

i u u

ii u v u v Cauchy Schwartz inequality

iii u v u v Triangular inequality

α α=

〈 〉 ≤

+ ≤ +

2

2 2 2

( ) ,
,

,

,

,

i u u u
u u

u u

u u

u u

u u

u u

α α α
α α

α α

αα

αα

α α

α α

= 〈 〉

= 〈 〉

= 〈 〉

= 〈 〉

= 〈 〉

=

⇒ =

2

2 2

Case(ii)

Let 0 and 0.
,Let

, ,since , let

u v
v uw v u
u

v u v uF k
u u

w v ku

≠ ≠
〈 〉

= −

〈 〉 〈 〉
∈ =

∴ = −

2 2

2 2 2
2 2

2
2 2

2 2 4

consider , ,
, , , ,

, ,

, ,, ,

,, , , ,

w w v ku v ku
v v v ku ku v ku ku

v k v u k u v kk u

v u v uv v u u v k u
u u

v uu v u v u v u vv u
u u u

〈 〉 = 〈 − − 〉
= 〈 〉 − 〈 〉 − 〈 〉 + 〈 〉

= − 〈 〉 − 〈 〉 +

〈 〉 〈 〉
= − 〈 〉 − 〈 〉 +

〈 〉〈 〉〈 〉 〈 〉〈 〉
= − − +
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( )CauchySchwartz Inequality
Case (i)

If 0 (or) 0 then , 0
Also 0, 0

Hence ,

ii

u v u v
u v

u v u v

= = 〈 〉 =

= =

〈 〉 =

2

2 2

Case(ii)

Let 0 and 0.
,Let

, ,since , let

u v
v uw v u
u

v u v uF k
u u

w v ku

≠ ≠
〈 〉

= −

〈 〉 〈 〉
∈ =

∴ = −

2 2

2 2 2
2 2

2
2 2

2 2 4

consider , ,
, , , ,

, ,

, ,, ,

,, , , ,

w w v ku v ku
v v v ku ku v ku ku

v k v u k u v kk u

v u v uv v u u v k u
u u

v uu v u v u v u vv u
u u u

〈 〉 = 〈 − − 〉
= 〈 〉 − 〈 〉 − 〈 〉 + 〈 〉

= − 〈 〉 − 〈 〉 +

〈 〉 〈 〉
= − 〈 〉 − 〈 〉 +

〈 〉〈 〉〈 〉 〈 〉〈 〉
= − − +

2 2 2
2

2 2 2

2
2

2

2
2

2

2
2

2

2 2 2

, , ,

,
,

We know that, , 0

,
0

,

,

,

u v u v u v
v

u u u

u v
w w v

u
w w

u v
v

u

u v
v

u

u v u v

u v u v

〈 〉 〈 〉 〈 〉
= − − +

〈 〉
〈 〉 = −

〈 〉 ≥

〈 〉
⇒ − ≥

〈 〉
≥

≥ 〈 〉
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( )

2

2 2

2 2

2 2

2 2

22

( )Triangular Inequality

,
, , , ,

, ,

2Re ,

2 , since,2Re( ) 2

2 since, ,

iii

u v u v u v
u u u v v u v v

u u v u v v

u u v v

u u v v z z

u u v v u v u v

u v u v

u v u v

+ = 〈 + + 〉

= 〈 〉 + 〈 〉 + 〈 〉 + 〈 〉

= + 〈 〉 + 〈 〉 +

= + 〈 〉 +

= + 〈 〉 +  =  

≤ + +  〈 〉 ≤  

+ ≤ +

⇒ + ≤ +

Theorem: 3
In an inner product space V(R), , ,x y V∀ ∈

2 2

( )

( ) 4 ,

i x y x y

ii x y x y x y

− ≤ −

+ − − = 〈 〉

Proof:

 

 

 

Theorem: 4

In an inner product space V, any subset of non-zero orthogonal vectors are 
linearly independent.

Proof:

( )

( ) ( )

(1)

( )

(2)

from (1)&(2),

i x x y y

x x y y

x y x y

y y x x

y y x x

y x y x

x y x y

x y x y

= − +

≤ − +

− ≤ − − − − − − −

= − +

≤ − +

− ≤ −

− − ≤ − − − − − − −

− ≤ −

[ ]

2 2

2 2

( ) , ,
, , , , , , , ,
, , , ,

4 , since V is real, , ,  

ii x y x y x y x y x y x y
x x x y y x y y x x x y y x y y
x y y x x y y x

x y x y x y x y y x

+ − − = 〈 + + 〉 − 〈 − − 〉

= 〈 〉 + 〈 〉 + 〈 〉 + 〈 〉 − 〈 〉 + 〈 〉 + 〈 〉 − 〈 〉
= 〈 〉 + 〈 〉 + 〈 〉 + 〈 〉

+ − − = 〈 〉 〈 〉 = 〈 〉
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Let  { }1 2 3, , ,..., nS v v v v= be a set of orthogonal vectors, which are non-zero.

3.1.6 Orthogonality

Orthogonal Projection

The idea of orthogonal projection is best depicted in the following figure.

The orthogonal projection of v onto u gives the component vector Projuv 
of v in the direction of u. This fact is best demonstrated in the case that u is 
one of the standard basis vectors.

[ ]
1 1 2 2 3 3

1 1 2 2 3 3

1 1 2 2 3 3

1 2 3

2

0, , 0
Let ... 0.
Consider ... , 0 0, 0 by theorem1

, , , ... , 0
.0 .0 .0 ... .0 0

, 0

0

i i j

n n

n n i i

i i i n n i

n

i i i

i i

v v v if i j
v v v v

v v v v v v
v v v v v v v v

v v

v

α α α α

α α α α

α α α α
α α α α
α

α

∴∀ ≠ 〈 〉 = ≠

+ + + + =

〈 + + + + 〉 = 〈 〉 =

⇒ 〈 〉 + 〈 〉 + 〈 〉 + + 〈 〉 =
⇒ + + + + =
⇒ 〈 〉 =

⇒ =

⇒



0 Hence S is linearly independent.iα =
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As shown in the figure above, the lengths of the orthogonal projections in 
the e1 and e2 directions, respectively, give the coordinates of the vector v in 
the standard basis. On the other hand, each coordinate can be obtained by 
computing the dot product of v and the corresponding standard basis vector, 
i.e.,

         ӀProje1 vӀ = v · e1,  and  ӀProje2 vӀ = v · e2.

However, the orthogonal projection of v in the e1 direction should not 
depend on the length of the vector we use to specify the direction. Hence, 
the validity of the observation above is based on the fact that e1 and e2 are 
“special” in some sense. The observation holds true precisely because the 
vectors e1 and e2 are unit vectors.

To obtain a similar conclusion in the general setting, consider vectors u 
and v in the  first figure. We first normalize u to get

.
uu
u u

∧

=

Now, this unit vector u
∧

 satisfies that Pr .
u

oj v v u∧

∧

=

Because u and Pr Pr .u
u

oj v oj v∧ = are in the same direction, we have Pr Pr .u
u

oj v oj v∧ = .  Thus

. .Proj Pr ( . )
.. .u

u

v u u v uv oj v u v u u u
u uu u u u

∧

∧ ∧ ∧   = = = =  
  

Definition:

Given vectors u, v ∈ Rmn, where 0u ≠ , then the orthogonal projection of 
v onto u is defined to be

             .P = Proj
.u

v uv u
u u

=

Let V be an inner product space. Let , , 0x v V v∈ ≠ . Then 

                
,

P
,

x v
v

v v
=

is the orthogonal projection of the vector x onto the vector v.

If 1 2, , , nv v v is an orthogonal set of vectors, then 

1 2
1 2

1 1 2 2

. . .
P=Proj

. . .
n

u n
n n

x v x v x v
v v v v

v v v v v v
= + + +

is the orthogonal projection of the vector x onto the subspace spanned by
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1 2, , , nv v v

3.1.7 Gram Schmidt Orthogonalization Process

Orthonormal basis: 

Let V be an inner product space. A subset S  of V  is orthonormal basis if it 
is an ordered basis that is orthonormal.

Example: The set 1 2 2 1, , ,
5 5 5 5

 −   
    
    

 is an orthonormal basis for 2R .

Theorem:1 (Gram Schmidt Orthogonalization Process)

Every finite dimensional inner product space has an orthonormal set as a 
basis.

Proof:

Let V(F) be a finite dimensional inner product space and dim( )V n= .

Let { }1 2 3, , ,..., nB v v v v= be a basis for V(F).

Claim: we have to construct an orthonormal basis{ }1 2 3, , ,..., nw w w w  from B

First we shall construct an orthogonal basis { }1 2 3, , ,...,u u u u from B .

We prove by induction on n . 

Take 1 1 0u v= ≠   

For, if 2 1
2 12

1

, 0v uv u
u

〈 〉
− =  then 2 1

2 12
1

, 0v uv u
u

〈 〉
− =

2 1
2 12

1

,v uv u
u

〈 〉
⇒ =

2 1

2

, are dependent, which is a contradiction
u 0
v u⇒

∴ ≠

Claim: 2 1 is orthogonal to u u

2 1
2 2 1 22

1

,Let , We have to prove 0v uu v u u
u

〈 〉
= − ≠
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Hence the theorem is true for 2n = .

Now, Assume the theorem is true for all integers up to 
{ }1 2 3, , ,..., ku u u u

 .

i.e. { }1 2 3, , ,..., ku u u u is an orthogonal set.

Now, we prove the theorem for 1n k= +

1 1 1 2 1
1 1 1 22 2 2

1 2

, , ,Let ...k k k k
k k k

k

v u v u v uu v u u u
u u u
+ + +

+ +

〈 〉 〈 〉 〈 〉
= − − − −   then 1 0ku + ≠

1 1 1 2 1
1 1 1 22 2 2

1 2

, , ,If 0, then ...k k k k
k k k

k

v u v u v uu v u u u
u u u
+ + +

+ +

〈 〉 〈 〉 〈 〉
= = + + +

 is a linear combination of { }1 2 3, , ,..., ku u u u and hence linear combination of 

{ }1 2 3, , ,..., kv v v v , which is a contradiction? Hence 1 0ku + ≠ .

To prove: 
1 2 3, , ,..., ku u u u

 is orthogonal to 1 2 3, , ,..., ku u u u . i.e. 1, 0k iu u+〈 〉 =

1 1 1 2 1
1 1 1 22 2 2

1 2

, , ,, ... ,k k k k
k i k k i

k

v u v u v uu u v u u u u
u u u
+ + +

+ +

〈 〉 〈 〉 〈 〉
〈 〉 = 〈 − − − − 〉

Hence { }1 2 3 1, , ,..., ku u u u +  is an orthogonal set.

Hence the theorem is true for n.

Hence, every finite dimensional inner product space has an orthonormal set 
as a basis.
Theorem: 2
Let V be an inner product space and  { }1 2 3, , ,..., nS v v v v= be an orthogonal 
subset of V consisting of

{ }

2 1
2 1 2 1 12

1

2 1
2 1 1 12

1

22 1
2 1 12

1

2 1 2 1

2 1

2 1

1 2

,, ,

,, ,

,,

, ,
, 0

 is orthogonal to 
,  is an orthogonal set

v uu u v u u
u

v uv u u u
u

v uv u u
u

v u v u
u u

u u
u u

〈 〉
〈 〉 = 〈 − 〉

〈 〉
= 〈 〉 − 〈 〉

〈 〉
= 〈 〉 −

= 〈 〉 − 〈 〉
〈 〉 =
⇒

⇒

1 1 1
1 12 2

1

1

, ,, , .... ,

, 0

k k k
k i i k i

k

k i

v u v uv u u u u u
u u

u u

+ +
+

+

〈 〉 〈 〉
= 〈 〉 − 〈 〉 − − 〈 〉

〈 〉 =
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non-zero vectors.  If ( )v L S∈ , then 
{ }1 2 3, , ,..., nS v v v v=

.

Proof:

Given:  V is an inner product space over F.

           { }1 2 3, , ,..., nS v v v v=  is a subset of V.

Let ( )v L S∈ , 1 1 2 2 3 3 ... n nv v v v vα α α α= + + + +

Where, 2
, , 1, 2,3,...i

i
i

v v i
v

α 〈 〉
= =

2
1 1

,n n
i

i i i
i i i

v vV v v
v

α
= =

〈 〉
= =∑ ∑

Example 1:

Let 
1 1
5 , 0 .
0 1

u v
−   

   = =   
      

Describe the set of all vectors in 3� that are orthogonal 

to both u and v

Let be a be a vector orthogonal to both u and v. Then 

Thus,

1 1

1 3

5 0
0

x x
x x
+ =

− + =

1 5 0
1 0 1

1 5 0
0 5 1

11 0
10 0
5

 
⇒  − 

 
⇒  

 
− 

 ⇒
 
 

1 1 2 2 3 3

1 1 2 2 3 3

2

, ... ,
, , , ... , ... ,
, [since , 0 ]

,

i n n i

i i i i i i n n i

i i i i j

i i i

v v v v v v v
v v v v v v v v v v
v v v v if i j

v v v

α α α α
α α α α α
α

α

〈 〉 = 〈 + + + + 〉
= 〈 〉 + 〈 〉 + 〈 〉 + + 〈 〉 + + 〈 〉
= 〈 〉 〈 〉 = ≠

〈 〉 =
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1 3

2 3

3 3

1
5

x x

x x

x x

⇒ =

= −

=

3 3

1
1Thus , , where x is a real number.
5
1

x x

 
 
 = = −
 
 
   .

The vectors in orthogonal to both u and v are the scalar multiples of

Example 2:

 Let   y=
2
3

 
 
 

 , 
4
7

u  
=  − 

 . Let { }L Span u=

(a) Find the orthogonal projection of y onto L.

(b) Write y as a sum of a vector in L and a vector orthogonal to L

Solution:

4 4. 13 1( )
7 7. 65 5L

y ua y proj y u
u u

    = = = − = −     − −     



( )
4
5

7
5

4
2 5
3 7

5

b y y z

y

z

→

→

= +

 − 
=  

 
  

 −  
= −   

   
    

14
5
8
5

 
 

=  
 
  

Example 3:

Let 
0 2 1
6 , 1 , 2
4 1 4

x u v
−     

     = = − =     
          

and { , }.W span u v=  Note that 0u v⋅ = .Find a 

vector a  in W ,such that x a b= + .

1
1
5
1

 
 
 −
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Solution:

Example 4:

 Given a vector 
2
4

x  
=  

 
and a line 1

1 2
2

: 4 3 0
x

L x x
x

   = + =  
   

in 2R .

(a) Find the vector in L that is closest to x that is, find the orthogonal 
      projection of x onto the line L.

Solution:

we have that

 
 
Example 5:

In 
1 2(1,1, 1, 1)and (1,1,1,1).v v= − − =
  ,let the subspace S be the span of the vectors 1 2(1,1, 1, 1)and (1,1,1,1).v v= − − =

 

Find the orthogonal projection of  (1, 2,3,4) intox S=


.

Solution: 
Note that the vectors 1 2and v v

 
 are an orthogonal basis for S. We want to 

write   
1 1 2 2x a v a v w= + +

   
 where w S⊥


.                                (1)

Then the orthogonal projection of x


 onto S will be

                                        1 1 2 2SP x a v a v= +
  

By the general strategy use above, to find 1a take the inner product of both 
sides of the equation (1) with 2v


.Because 2v


is orthogonal to both 2v


and w

, we obtain
                     
                       

,

2 1 2 1 2 2
2 28 1 41 2 1 2 3 , 3

6 21 3 3
1 4 1 4 5 1

W
x u x va proj x u v b x a
u u v v

a b x a

   = = + = −   
   

− − −           
− −           = − + = − + = = − =           

           −           

� �

� �

3
( ) where u=

4

6
3 310 2 5( )

4 4 825 5
6

L

L span u

x ua x proj x u
u u

− 
=  

 
 − − −    = = = = =              
  

�

�

1 1
1 1 1 1 1 1 2

1

, 4, , so 1.
4

x v
x v a v v a

v

−
= = = = −
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Similarly, 
1 2

2 2

2

, 10 5
4 2

x v
a

v
= = =

 



Using these values in equation number (1) we find the projection of x


into S is 
                       
                        

The projection of x


into S is
      

3.1.8 Linear Combination-Linear and convex combinations of vectors

Definition: 

Let  be a vector space and  be a non empty subset of . A vector  is 
called a linear combination of vectors of , if there exists ;      

 such that .

Note: In any vector space ,  for each . Thus zero vector is a 
linear combination of any non-empty subset of .

Linear span:

Let  be a non empty subset of the vector space . The set of all linear 
combinations of finite sets of elements of  is called the linear span of  and it 
is denoted as  or .

A subset  of a vector space  generates (or spans)  if .

Example:1 

In  over , test whether  is a linear combination of the vectors  
 and .

Solution:  

Let 
                  
                               
               
Therefore, the equations are

1 2

1

1 1 3
1 1 35 11
1 1 72 2
1 1 7

SP x v v

     
     
     = − + =
     −
     −     

  

1 3 1
2 3 11 1
3 7 12 2
4 7 1

s sw P x x P x

−     
     
     = ⊥ = − = − =
     −
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                       …..(1)
                     …..(2)
                       …..(3)
We write the above system of equations in the matrix form,

      
Changing into the row echelon form, 

       since   

We get ,  and       

Here the equations are inconsistent. 

    cannot be written as a linear combination of the vectors  
and .

Example:2 

In  over , test whether  is a linear combination of the vectors 

 .

Solution: 
Let 

              
                         
            

  Therefore, the equations are

        …..(1)
    …..(2)
    …..(3)

 We write the above system of equations in the matrix form,

                            =  
Changing into the row echelon form, 
     1 1 2 1

1 2 1 2
1 3 1 5

A
 
 = − − 
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            2 2 1 3 3 1

1 1 2 1
0 1 3 3 since ,
0 2 1 4

R R R R R R
 
 − − → − → − 
 − 

�

       3 3 1

1 1 2 1
0 1 3 3 since 2
0 0 5 10

R R R
 
 − − → − 
  

�

  Now the equations are   …..(4)

                                                  .............…..(5)
                         and                            ...........…..(6)

From the equations (4), (5) and (6), we get

  ,  and        

Substituting  satisfies the equations (1), (2) and (3).
     Hence the equations are consistent.

     is a linear combination of the vectors 

. That is .

Example:3 

In  is vector space of polynomials of degree  over R. Test whether    

 is a linear combination of  and 

3 .

Solution: 
Let    

Now comparing  and constant terms on both sides, we get

The equations are     …..(1)
           …..(2)
                          …..(3)
                and    …..(4) 

We write the above system of equations in the matrix form,
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1 3 2
2 5 2
5 4 12
3 9 6

α
β

   
   − − −    =    − −  
   − − −   

Changing into the row echelon form,

    

1 3 2
0 1 2
0 11 22
0 0 0

 
 
 
 
 
 

�
   

1 3 2
0 1 2
0 11 22
0 0 0

 
 
 
 
 
 

�

       2 2 1 3 3 1 4 4 1

1 3 2
0 1 2

  2 , 5 , 3
0 11 22
0 0 0

R R R R R R R R R

 
 
  → + → + → +
 
 
 

�

    

Now the equations are      …..(4)

                                                        …..(5)

    From the equations (4), (5)  we get .

Hence the equations are consistent.

 is a linear combination of  and 

3 .

.
 Example:4 

Test whether the indicated vector  is in the linear span of  

 in .

Solution: 
               Given 
                  
    Let, 
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Solving the above equations, we get  which satisfies all the 
above   
    equations. Hence the equations are consistent.

     

     .

Example:5 

Test whether the indicated matrix  is in the linear span of

     in .

Solution: 

Given 

   

    If , then 

    

    

  

   
These values are not satisfied the above equations. Hence the equations are 
inconsistent.

       .

Example:6 

Show that the matrices  and  generates 
.

Solution: 

                   Let 

    

    

       …(1)
          …(2)
          …(3)
          …(4)

We write the above system of equations in the matrix form,
         

    Changing into the row echelon form, 
     
     
   

         2 2 1 3 3 1

1 1 1 0
0 0 1 1

since ,
0 1 0 1
0 1 1 1

a
b a

R R R R R R
c a

d

 
 − −  → − → −
 − −
 
 

�

 Interchanging the rows 

         

     

   

1

2

3

4

1 1 1 0
1 1 0 1
1 0 1 1
0 1 1 1

a
b
c
d

α
α
α
α

    
    
    =
    
    

    

1 1 1 0
1 1 0 1
1 0 1 1
0 1 1 1

a
b

A
c
d

 
 
 =
 
 
 

1 1 1 0
0 1 0 1
0 0 1 1
0 1 1 1

a
c a
b a

d

 
 − − 
 − −
 
 

�

( ) ( )2 2 3 3

1 1 1 0
0 1 0 1

since 1 , 1
0 0 1 1
0 1 1 1

a
a c

R R R R
a b

d

 
 − −  → − × → − ×
 − −
 
 

�

4 4 2

1 1 1 0
0 1 0 1

Since
0 0 1 1
0 0 1 2

a
a c

R R R
a b

a c d

 
 − −  → −
 − −
 − + + 

�

DDE, P
on

dic
he

rry
 U

niv
ers

ity



Notes

109

    

    

       …(1)
          …(2)
          …(3)
          …(4)

We write the above system of equations in the matrix form,
         

    Changing into the row echelon form, 
     
     
   

         2 2 1 3 3 1

1 1 1 0
0 0 1 1

since ,
0 1 0 1
0 1 1 1

a
b a

R R R R R R
c a

d

 
 − −  → − → −
 − −
 
 

�

 Interchanging the rows 

         

     

   

1

2

3

4

1 1 1 0
1 1 0 1
1 0 1 1
0 1 1 1

a
b
c
d

α
α
α
α

    
    
    =
    
    

    

1 1 1 0
1 1 0 1
1 0 1 1
0 1 1 1

a
b

A
c
d

 
 
 =
 
 
 

1 1 1 0
0 1 0 1
0 0 1 1
0 1 1 1

a
c a
b a

d

 
 − − 
 − −
 
 

�

( ) ( )2 2 3 3

1 1 1 0
0 1 0 1

since 1 , 1
0 0 1 1
0 1 1 1

a
a c

R R R R
a b

d

 
 − −  → − × → − ×
 − −
 
 

�

4 4 2

1 1 1 0
0 1 0 1

Since
0 0 1 1
0 0 1 2

a
a c

R R R
a b

a c d

 
 − −  → −
 − −
 − + + 

�
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Now the corresponding equations are 
               …(4)
           …(5)
           …(6)
         …(7)

     
Substituting  in equations (4), (5), (6)

    ,  and 

   
Which satisfies the equations (1), (2), (3), (4).

    Hence the equations are consistent.

    

                    

The given matrices generate .

Example:7 

Show that the vectors  and  generates .

Solution: 

      Let , 
     
     
    
We write the above system of equations in the matrix form,       

By changing into the row echelon form, 

4 4 3

1 1 1 0
0 1 0 1

Since
0 0 1 1
0 0 0 3 2

a
a c

R R R
a b

a b c d

 
 − −  → −
 − −
 − + + + 

�

1

2

3

1 1 0
1 0 1
0 1 1

a
b
c

α
α
α

     
     =     
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1 1 0
1 0 1
0 1 1

a
A b

c

 
 =  
  

                 
3 3 2

1 1 0
0 1 1  
0 0 2

a
b a R R R

a b c

 
 − − → + 
 − + + 

�

            3 3 2

1 1 0
0 1 1  
0 0 2

a
b a R R R

a b c

 
 − − → + 
 − + + 

�

Now the equations are 

                      
                   

                       
Substituting  in the above equations, we get

                        

Which satisfies the equations (1), (2), (3).

Hence the equations are consistent.

                     
Therefore, any vector can be written as a linear combination of 
vectors.
Hence the given vectors generate .

3.1.9 Convex Combination

 A convex combination is a special type of linear combination where 
the coefficients (scalars) are non-negative and sum up to 1. Let's consider 
vectors v₁, v₂, ..., vₙ, and scalars a₁, a₂, ..., aₙ. A convex combination is given by: 
c = a₁v₁ + a₂v₂ + ... + aₙvₙ where a₁, a₂, ..., aₙ satisfy the following conditions:

a₁ ≥ 0, a₂ ≥ 0, ..., aₙ ≥ 0 (non-negativity condition)

a₁ + a₂ + ... + aₙ = 1 (normalization condition)

The second condition ensures that the coefficients sum up to 1, making it a 
convex combination.

Let's work on some examples to better understand linear and convex 
combinations.
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Example 1: 

Consider two vectors in R²:

 v₁ = [2, 3]
 v₂ = [-1, 4]

Find the linear combination:

Solution:

 c = 3v₁ - 2v₂

To obtain the linear combination, we multiply each vector by its scalar and 
add them together:

 c = 3[2, 3] - 2[-1, 4]
    = [6, 9] - [-2, 8]
    = [8, 1]

So, the linear combination of 3v₁ - 2v₂ is [8, 1].

Example 2: 

Consider three vectors in R³:

 v₁ = [1, 0, 2]
 v₂ = [0, 1, -1]
 v₃ = [2, 1, 3]

Find a convex combination of these vectors.

Solution:

Let's choose the coefficients as follows:

 a₁ = 0.4, a₂ = 0.3, a₃ = 0.3
The convex combination is given by:

 c = 0.4v₁ + 0.3v₂ + 0.3v₃
 c = 0.4[1, 0, 2] + 0.3[0, 1, -1] + 0.3[2, 1, 3]
 = [0.4, 0, 0.8] + [0, 0.3, -0.3] + [0.6, 0.3, 0.9]
 = [1, 0.6, 1.4]
So, the convex combination of v₁, v₂, and v₃ with coefficients 0.4, 0.3, and 0.3 
is [1, 0.6, 1.4].

Exercise:

1) Given vectors v₁ = [2, 3, -1] and v₂ = [1, -2, 4], find the linear 
combination: c = 2v₁ + 3v₂.
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2) Consider three vectors in R⁴: v₁ = [1, 0, -1, 2], v₂ = [0, 1, 1, 0], and 
v₃ = [-1, 2, 1, 3]. Find a convex combination of these vectors with 
coefficients a₁ = 0.2, a₂ = 0.3, and a₃ = 0.5.

3) Let v₁ = [-1, 2, 3] and v₂ = [4, -2, 0]. Determine the values of scalars a 
and b such that 

4) c = av₁ + bv₂ is the midpoint of v₁ and v₂.

Example 1: 

Consider two vectors v₁ = [1, 2] and v₂ = [3, 1]. Find the convex combination 

           c = λ₁v₁ + λ₂v₂ for λ₁ = 0.6 and λ₂ = 0.4.

Solution:

           c = 0.6[1, 2] + 0.4[3, 1]

             = [0.6 * 1, 0.6 * 2] + [0.4 * 3, 0.4 * 1]
             = [0.6, 1.2] + [1.2, 0.4]
             = [0.6 + 1.2, 1.2 + 0.4]
             = [1.8, 1.6]

Therefore, the convex combination c of v₁ and v₂ with λ₁ = 0.6 and λ₂ = 0.4 is 
c = [1.8, 1.6].

Example 2: 

Consider three vectors v₁ = [1, 1], v₂ = [-1, 3], and v₃ = [2, -2]. Find a convex 
combination c = λ₁v₁ + λ₂v₂ + λ₃v₃ for λ₁ = 0.3, λ₂ = 0.4, and λ₃ = 0.3.

Solution:

         c = 0.3[1, 1] + 0.4[-1, 3] + 0.3[2, -2]
            = [0.3 * 1, 0.3 * 1] + [0.4 * -1, 0.4 * 3] + [0.3 * 2, 0.3 * -2]
            = [0.3, 0.3] + [-0.4, 1.2] + [0.6, -0.6]
            = [0.3 - 0.4 + 0.6, 0.3 + 1.2 - 0.6]
            = [0.5, 0.9]

Therefore, the convex combination c of v₁, v₂, and v₃ with λ₁ = 0.3, λ₂ = 0.4, 
and λ₃ = 0.3 is  c = [0.5, 0.9].

Certainly! Here are a few more example problems involving convex 
combinations of vectors:

Example  3: 

Consider four vectors: v₁ = [1, 0, 2], v₂ = [-1, 1, 0], v₃ = [2, 1, 1], and v₄ = [0, 
-1, 1]. Find a convex combination c = λ₁v₁ + λ₂v₂ + λ₃v₃ + λ₄v₄ such that λ₁  
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                = 0.2, λ₂ = 0.3, λ₃ = 0.4, and 
           λ₄ = 0.1.

Solution:

c = 0.2[1, 0, 2] + 0.3[-1, 1, 0] + 0.4[2, 1, 1] + 0.1[0, -1, 1]

  = [0.2 * 1, 0.2 * 0, 0.2 * 2] + [0.3 * -1, 0.3 * 1, 0.3 * 0] + [0.4 * 2, 0.4 * 1, 0.4 *    
     1] + [0.1 * 0, 0.1 * -1, 0.1 * 1]

  = [0.2, 0, 0.4] + [-0.3, 0.3, 0] + [0.8, 0.4, 0.4] + [0, -0.1, 0.1]

  = [0.2 - 0.3 + 0.8, 0 + 0.3 - 0.1, 0.4 + 0 - 0.1]

  = [0.7, 0.2, 0.3]

Therefore, the convex combination c of v₁, v₂, v₃, and v₄ with λ₁ = 0.2, λ₂ = 
0.3, λ₃ = 0.

Example 4: 

Consider three vectors: v₁ = [1, 2], v₂ = [3, 1], and v₃ = [-2, 0]. Find a convex 
combination c = λ₁v₁ + λ₂v₂ + λ₃v₃ such that λ₁ = 0.2, λ₂ = 0.5, and λ₃ = 0.3.

Solution:

c = 0.2[1, 2] + 0.5[3, 1] + 0.3[-2, 0]
  = [0.2 * 1, 0.2 * 2] + [0.5 * 3, 0.5 * 1] + [0.3 * -2, 0.3 * 0]
  = [0.2, 0.4] + [1.5, 0.5] + [-0.6, 0]
  = [0.2 + 1.5 - 0.6, 0.4 + 0.5]
  = [1.1, 0.9]

Therefore, the convex combination c of v₁, v₂, and v₃ with λ₁ = 0.2, λ₂ = 0.5, 
and λ₃ = 0.3 is  c = [1.1, 0.9]. 

Example  5: 

Consider four vectors: v₁ = [1, 0], v₂ = [0, 1], v₃ = [1, 1], and v₄ = [-1, -1]. Find 
a convex combination c = λ₁v₁ + λ₂v₂ + λ₃v₃ + λ₄v₄ such that λ₁ = 0.4, λ₂ = 
0.1, λ₃ = 0.3, and  λ₄ = 0.2.

Solution:

c = 0.4[1, 0] + 0.1[0, 1] + 0.3[1, 1] + 0.2[-1, -1]
  = [0.4 * 1, 0.4 * 0] + [0.1 * 0, 0.1 * 1] + [0.3 * 1, 0.3 * 1] + [0.2 * -1, 0.2 * -1]
  = [0.4, 0] + [0, 0.1] + [0.3, 0.3] + [-0.2, -0.2]
  = [0.4 + 0.3 - 0.2, 0 + 0.1 + 0.3 - 0.2]
  = [0.5, 0.2]

Therefore, the convex combination c of v₁, v₂, v₃, and v₄ with λ₁ = 0.4, λ₂ =  
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              0.1, λ₃ = 0.3, and λ₄ = 0.2 is c = [0.5, 0.2].

Exercise:

Determine whether u and v are orthogonal vectors
    

 Answers

3.1.10 Self Assessment Question

1. Express the vector (1,-2,5) as a linear combination of the vectors 
(1,1,1),  (1, 2, 3) and (2, -1, 1) in R3

2. Find a unit vector orthogonal to 1 (1, 2,1)v =  and 2 (3,1,0)v = in R3 
with standard inner product.

3. Find k so that  ( )1,2, ,3u k=  and  in 4R  are orthogonal.

4. Let u = (-1, 1/4) and v = (4, -1/8). Then find  .

5. Determine whether the vectors form an orthogonal set 

6. 1 2 3( 3, 4, 1), (1, 2,5), (4, 3,0)v v v= − − = = −

Summary3.1.11Summary

1.Vector: A -dimensional vector  is an ordered collection of  real numbers 
    written as . The numbers  are 

called the component  vector .

2. Scalar multiplication: Scalar multiplication of a vector  

and a scalar  is defined to be a new  vector , written  
or , whose components are given by 

3. Vector addition: Vector addition of two -dimensional vectors 
 and   is defined as a new vector 

, denoted , with components given  by 

.

( ) (6,1, 4), (2,0, 3)
( ) (0,0, 1), (1,1,1)
( ) ( 6,0,4), (3,1,6)
( ) (2,4, 8), (5,3,7)

a u v
b u v
c u v
d u v

= = −
= − =
= − =
= − =

( )orthogonal
(b) not orthogonal
(c) not orthogonal
(d) not orthogonal

a
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4. Vector space: Set  is called a vector space over a field  if the operations 
"addition of  vectors" (deno  by +) and scalar multiplication (denoted by .) are 
defined such that the following hold:

  ➢ is a binary operation, i.e.  for all .

  ➢ is associative, i.e.  for all .

  ➢ is commutative, i.e.  for all .

Additive identity: There exists  such that  for all 
.

Additive inverse: To each element  of  there is an element  in  such 

 . Then  is the additive inverse of .It is denoted by .

Scalar multiplication is well defined i.e.  and 

Additive inverse: To each element  of  there is an element  in  such that

  the additive inverse of .It is denoted by .

Scalar multiplication is well defined i.e.  and 

 and 

 and 

 and 

6. Inner Product Space:

An inner product on a vector space ( )V F  is a function that assigns, to every 
ordered pair of vectors ,u v V∈ , a scalar in F  such that , ,u v w V∀ ∈  and 

, Fα β∀ ∈  the following axioms hold.

, ,u v v u〈 〉 = 〈 〉 , where the bar denotes the complex conjugation

, , ,u v w u w v w〈 + 〉 = 〈 〉 + 〈 〉

, ,u v u vα α〈 〉 = 〈 〉

, 0 and , 0 if and only if 0u u u u u〈 〉 ≥ 〈 〉 = = .

A vector space ( )V F  with an inner product on it is called an inner product 
space.

7.Norm or length of a vector

Let be an inner product space.  For v V∈ , we define the norm or length of v  

by ,v v v= 〈 〉 .

The vector 1v = is called a unit vector if 1v = .
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8. Orthogonal Vectors

Let V be an inner product space.  The vectors v and v  in V are orthogonal (or 
perpendicular) if , 0u v〈 〉 = .A subsetV of V is orthogonal if any two distinct 
vectors in S  are orthogonal.

9. Orthogonal projection:

Given vectors u, v ∈ Rn, where 0u ≠ , then the orthogonal projection of 
v onto u is  , , 0x v V v∈ ≠
Let V be an inner product space. Let , , 0x v V v∈ ≠ . Then 

                
is the orthogonal projection of the vector x onto the vector v.

If 1 2, , , nv v v is an orthogonal set of vectors, then 

   

1 2
1 2

1 1 2 2

. . .
P=Proj

. . .
n

u n
n n

x v x v x v
v v v v

v v v v v v
= + + +

is the orthogonal projection of the vector x onto the subspace spanned by

1 2, , , nv v v

10. Orthonormal basis: 

Let V be an inner product space. A subset V  of V  is orthonormal basis if it 
is an ordered basis that is orthonormal.

11. Gram Schmidt Orthogonalization Proc

Every finite dimensional inner product space has an orthonormal set as a 
basis.

12. Linear combination

Let  be a vector space and  be a non empty subset of . A vector       is 
called a linear combination of vectors of , if there exists 
;       such that .

13. Linear span:

Let  be a non empty subset of the vector space . The set of all linear 
combinations of finite sets of elements of  is called the linear span of 

 and it is denoted as  or .A subset  of a vector space  
generates (or spans)  if .  

,
P

,
x v

v
v v

=
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14. Convex Combination

A convex combination is a special type of linear combination where the 
coefficients (scalars) are non-negative and sum up to 1. Let's consider 
vectors v₁, v₂, ..., vₙ, and scalars a₁, a₂, ..., aₙ. A convex combination is 
given by: c = a₁v₁ + a₂v₂ + ... + aₙvₙ where a₁, a₂, ..., aₙ satisfy the following 
conditions: a₁ ≥ 0, a₂ ≥ 0, ..., aₙ ≥ 0 (non-negativity condition)
a₁ + a₂ + ... + aₙ = 1 (normalization condition)

The second condition ensures that the coefficients sum up to 1, making it a 
convex combination.

15. Linear Combination:

Let  be a vector space and  be a non empty subset of . A vector  is 
called a linear combination of vectors of , if there exists 
;  such that .
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UNIT – IV

Lesson 4.1- Elementary Calculus – Differentiation

Structure

4.1.1   Objectives

4.1.2   Introduction:

4.1.3   Derivatives of Polynomials and Exponential Functions

4.1.4   Differentiability and Continuity

4.1.5   Relationship between Differentiability and Continuity:

4.1.6   Rules of Differentiation

4.1.7   Composite Functions and the Chain Rule

4.1.8   Derivative of inverse trigonometric functions

4.1.9   Implicit Differentiation

4.1.10  Higher Order Derivatives

4.1.11 Concavity And Convexity Of The Function

4.1.12 Self Assessment Questions

4.1.13 Summary

4.1.1 Objectives

1. Remember the properties of sums, products, and quotients of 
functions also recognize the concept of composite functions and 
the chain rule 

2. Explain the meaning of differentiability and continuity

3. Interpret the rules and techniques of differentiation

4. Explain the concepts of sums, products, and quotients of functions

5. Describe the concept of composite functions and the chain rule

6. Apply the concepts of inverse functions to solve problems

4.1.2 Introduction
 
 The derivative of a function is a fundamental concept in calculus 
that represents the rate at which the function changes at a particular point. 
Geometrically, the derivative represents the slope of the tangent line to the 
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function at that point.

 Differentiability and continuity are important concepts in calculus that 
relate to the smoothness of a function. A function is said to be differentiable at 
a point if its derivative exists at that point. A function is said to be continuous 
at a point if it does not have any abrupt changes or "jumps" at that point.

 Techniques of differentiation include the power rule, product rule, 
quotient rule, and chain rule. The power rule states that the derivative of 
x^n is nx^(n-1). The product rule is used to differentiate the product of two 
functions, and the quotient rule is used to differentiate the quotient of two 
functions. The chain rule is used to differentiate composite functions.

 Composite functions are functions that are made up of two or more 
functions. The chain rule is used to differentiate these functions by breaking 
them down into smaller parts and finding the derivative of each part separately.

 Inverse functions are functions that "undo" each other. The derivative 
of an inverse function can be found using the chain rule and the fact that the 
derivative of the inverse function is equal to 1 divided by the derivative of the 
original function.

 Implicit differentiation is used to find the derivative of a function that 
is not written in explicit form. This involves differentiating both sides of an 
equation with respect to the variable of interest.

 Second and higher-order derivatives provide information about the 
curvature of a function. The second derivative represents the rate at which 
the slope of the tangent line changes, and can be used to determine whether a 
function is concave or convex.

 Concavity and convexity of functions are important concepts in 
calculus that relate to the shape of a function. A function is said to be concave if 
its second derivative is negative, and convex if its second derivative is positive.

 Overall, a solid understanding of the derivative of a function and its 
various applications is essential for success in calculus and many other areas 
of mathematics and science

4.1.3 Derivatives of Polynomials and Exponential Functions

 1.  Derivative of a Constant Function
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2. The Power Rule

                                                 

                                                   

3. Derivative of the natural exponential function Derivative of a natural 
exponential function is again natural exponential function.

 The following graph shows the derivative of a natural exponential function.

The slope at the point (0,1) is 1. In general, the slope at the point  is 

Remark:

4.1.4 Differentiability and Continuity

 Differentiability and continuity are fundamental concepts in calculus 
and mathematical analysis. They describe the behaviour of functions and 

In general,  

where b is a positive real number.

 , for any real value of.
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provide important properties for understanding their behavior.

Continuity

Continuity is a property of a function that describes how it behaves without 
any abrupt changes or jumps. A function f(x) is said to be continuous at a 
point x = a if three conditions are met:

a. The function is defined at x = a.

b. The limit of the function as x approaches a exists.

c. The limit of the function as x approaches a is equal to the value of the   
    function at x = a.

If a function satisfies these conditions for all points in its domain, it is called a 
continuous function.

Differentiability:

 Differentiability is a stronger condition than continuity. A function 
f(x) is said to be differentiable at a point x = a if the derivative of the function 
exists at that point. Geometrically, this means that the function has a well-
defined tangent line at x = a.

The derivative of a function f(x) at a point x = a is denoted by f '(a) or 
x a

dy
dx =

It 
represents the rate of change of the function at that point.

 A function is differentiable if it is differentiable at every point in its 
domain. If a function is differentiable, it must also be continuous, but the 
converse is not always true. There are functions that are continuous but not 
differentiable at certain points.

4.1.5 Relationship Between Differentiability and Continuity

 If a function is differentiable at a point, it must be continuous at that 
point. This implies that differentiability is a stronger condition than continuity. 
However, continuity does not guarantee differentiability. For a function to be 
differentiable, it requires the existence of a well-defined tangent line, which 
may not be possible if the function has sharp corners, cusps, or vertical 
tangents.

(a) Differentiability Implies Continuity Theorem

 The differentiability implies continuity theorem states that if a function 
f(x) is differentiable at a point x=a, then f(x) must be continuous at that point.  
This theorem provides a useful criterion for determining continuity based on
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differentiability.

 In summary, continuity describes the absence of abrupt changes in a 
function, while differentiability extends the notion of continuity to include 
well-defined tangent lines. Both concepts play crucial roles in calculus and 
analysis, providing insights into the behavior of functions and enabling the 
development of powerful mathematical technique.

Definition:

 A function f is said to be differentiable in the closed interval [a,b] if 
it is differentiable on the open interval (a,b) and at the end points a and b,

If f  is differentiable at 0x x=  then 
0

' 0
0

0

( ) ( )( ) lim
x x

f x f xf x
x x→

−
=

−
where 

0 0and 0is equivalent to .x x x x x x= + → →� �  

As a matter of convenience, if we let h x=� , then 

'

0

( ) ( )( ) lim ,
h

f x h f xf x
h→

+ −
= provided the limit exists.

Example 1: Test the differentiability of the function ( ) 2 at x=2.f x x= −  

Solution: We know that this function is continuous at x=2.

 
 But

Since the one-sided derivatives ' (2 )f − and ' (2 )f +  are not equal, ' (2)f  
does not exist. That is , f is not differential at x=2. At all other points, the 
function is differentiable.

If 0 2x ≠  is any other point
 

'

00

'

00

( ) ( ) ( ) ( )( ) , 0

( ) ( ) ( ) ( )( ) , 0

lim lim

lim lim
hx

hx

f a x f a f a h f af a h
x h

f b x f b f b h f bf b h
x h

→∆ →

→∆ →

+ ∆ − + −
= = >

∆
+ ∆ − − −

= = >
∆ −

'

2 2

2 2

'

2 2

2 2

2 0( ) (2)(2 ) lim lim
2 2

2 ( 2)lim lim 1
2 ( 2)

2 0( ) (2)(2 ) lim lim
2 2

2 ( 2)lim lim 1
2 ( 2)

x x

x x

x x

x x

xf x ff
x x

x x
x x

xf x ff
x x

x x
x x

− −

− −

+ +

+ −

−

→ →

→ →

+

→ →

→ →

− −−
= =

− −
− − −

= = = −
− −

− −−
= =

− −
− −

= = = −
− −

DDE, P
on

dic
he

rry
 U

niv
ers

ity



Notes

124

The fact that ( )' 2f does not exist.

Example 2: Examine the differentiability of 
1
3( ) at x=0f x x= .

Solution: 

Let 
1
3( ) .f x x= Clearly, there is no hole (or break) in the graph of this 

function z And hence it is continuous at all points of its domain.
Let us check whether ' (0)f exists.

 
 Now, 

Therefore, the function is not differentiable at x=0. So, f is not differentiable 
at x=0.

Note : If a function is continuous at a point, then it is not necessary that the 
function is differentiable at that point.

Exercise:

Examine the differentiability off (x) at x=1 

2
2

, 1
( ) ( ) 1 ( ) ( ) 1 ( ) ( )

, 1
x x

i f x x ii f x x iii f x
x x

≤
= − = − =  >

  Answer:

  

4.1.6 Rules of Differentiation 

1. The constant multiple rule:

( )

( )

0

00'
0

00

'

1
lim

1

1 2
Thus 2

1 2

x x

if x xx x
f x

if x xx x

if x
f

if x

→

>− 
= = − <− 

>
= − <

1
3

'

0 0

2
3

20 0
3

( ) (0) 0(0) lim lim
0

1lim lim

x x

x x

f x f xf
x x

x
x

→ →

−

→ →

− −
= =

−

= = → ∞

' '

'

' '

( ) (1 ) 1, (1 ) 1,not differentiable
( ) ( ) 1 ,not differentiable
(iii) (1 ) 1, (1 ) 2,not differentiable

i f f
ii f x as x

f f

− +

−

− +

= − =

→ −∞ →
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2. The sum rule:

The derivative of the sum of two (or more) differentiable functions is equal to 
the sum of their derivatives

3. The difference rule:

derivative of the difference of two (or more) differentiable functions is equal to 
the difference of their derivatives.

4. The product rule:

The above formula gives the rule to find the derivative of product of two 
functions. The same formula can be extended to find the derivative of product 
of three functions.

[ ] [ ] [ ] [ ]( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )d d d df x g x h x f x g x h x f x h x g x g x h x f x
dx dx dx dx

= + +

5. The quotient rule:

The above formula gives the rule to find the derivative of quotient of two 
functions.

6. The chain rule: Let  be a function of  and in turn let  

be a function of  so that  ThenDDE, P
on

dic
he

rry
 U

niv
ers

ity



Notes

126

Differentiation Formulae

Example 1: If  Then 

Example 2: If Then 

Example 3: If Then 
Example 4: Differentiate the following functions.

 a)                        b)  

 Solution:

Given . Then by power rule of differentiation, we have

  .

         If   then =1000 .

Example 5:  Find the derivative of the function . 

Solution:                  Given 

                           

(using sum rule)
The product rule:
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Example:1 Differentiate the function
(a) 

Given , 
          where  and .
 

                               =2x—4+2x+3

Example:2  Find ' ( )f x , if ( )( ) xf x e x x x= + .

Solution:  Given ( )( ) xf x e x x x= +       

Example:3 Find the derivative of ( )3
2 4

1 3( ) 5y x x x
x x

 = − + 
 

.

Solution: Given ( )3
2 4

1 3( ) 5y x x x
x x

 = − + 
 

                        

Example: 4 Find the derivative of 2
2

1 tanx x
x

 + 
 

.

Solution:    Let  2
2

1( ) tany x x x
x

 = + 
 

( ) ( )

( ) ( )

( )

( )

1' 2

'

1( ) ( ) 1 . .1
2

1( ) ( ) 1 .
2

11 .
2

31
2

31
2

x x

x x

x x

x x

x

d f x f x e x x x x x x e
dx
d f x f x e x x x x x e
dx x

e x x x x x e

xe x x x e

xe x x x

− = = + + + +  
 

= = + + + + 
 
 = + + + +  
 

= + + + 
 
 

= + + + 
 

( ) ( )2 3
2 4 3 5

2 4 2 2 4 2

4 2

1 3 2 12'( ) 1 15 5

1 3 45 2 12 6015 10

9 14 5

y x x x x
x x x x

x x x x x x

x x

−   = − + + + +   
   

= − + − − − + +

= + +DDE, P
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                        2 2
2 3

1 2'( ) sec tan 2y x x x x x
x x

−   = + + +   
   

Example:5 Find the derivative of f(x) if ( ) ( )f x a bx x= +

Solution: The given function is

( ) ( )f x a bx x= +

Differentiating using the product rule

'( ) ( )

1( )
2

( ) 2
2

3
2

df x a bx x
dx

a bx xb
x

a bx bx
x

a bx
x

 = + 

= + +

+ +
=

+
=

 

Exercise problems

Find the first and second derivatives of the functions.

        (b)  xe x−          (c) xxe      (d) 
2 sinx x

Answers:
3 2 24 12 16, 12 24x x x x− + −      (b) 1,x xe e−     (c) , 2x x x xxe e xe e+ +

(d) 2 cos 2 sinx x x x+

4.1.7 Composite Functions and the Chain Rule

The chain rule is an important concept in calculus that allows us to find 
the derivative of composite functions. A composite function is a function 
within another function, and the chain rule provides a method for finding its 
derivative.

The chain rule states that the derivative of a composite function f(g(x)) is 
equal to the product of the derivative of the outer function f '(g(x)) with the 
derivative of the inner function g'(x). In other words:

                                         (f(g(x)))' = f '(g(x)) * g'(x)

If a composite function r( x) is defined as
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Here, three functions— m, n, and p—make up the composition function r; 
hence, you have to consider the derivatives m', n', and p' in differentiating r( x). A 
technique that is sometimes suggested for differentiating composite functions 
is to work from the “outside to the inside” functions to establish a sequence for 
each of the derivatives that must be taken.

 

3

3

2

Example3:Find sin (3 1)

3sin (3 1).cos(3 1).(3)

9cos(3 1)sin (3 1)

dy if y x
dx

dy x x
dx

x x

= −

= − −

= − −

2 5Example5:Find theslopeof the tangent line toa curve y=(x -3) at the point(-1,-32)

Because the slope of the tangent line to a curve is the derivative, you find that

2 8

2 7

2 7

2

2

Example1:Find '( ) ( ) (3 5 2)
'( ) 8(3 5 2) .(6 5)

8(6 5).(3 5 2)

Example 2 :Find '( ) ( ) tan(sec )
'( ) sec (sec ).sec tan

sec (sec ).sec tan

f x if f x x x
f x x x x

x x x

f x if f x x
f x x x x

x x x

= + −

= + − +

+ + −

=

=

2

1
2 2

1
2 2

2

Example 4 : Find '(2) ( ) 5 3 1

( ) (5 3 1)

1'( ) (5 3 1) (10 3)
2

10 3
2 5 3 1

f if f x x x

f x x x

f x x x x

x
x x

−

= + −

= + −

= + − +

+
=

+ −

2

10.2 3'(2)
2 5( ) 3 1

23
2 25
23
10

f
x x

+
=

+ −

=
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Which represents the slope of the tangent line at the point (-1,-32)

4.1.8 Derivative of Inverse Trigonometric Functions

Example:1 Find the derivative of the following functions:

(a) 

(b) 

Solution:

(a)  Given,  

          ⇒

(b) 

The Quotient rule:

,   where  and g are 

differentiable functions.

Example:1 Find the derivative of   

2 4

2 4

2 4

4

' 5( 3) (2 )
10 ( 3)

hence,at( 1, 32) ' 10( 1)[( 1) 3]
( 10)( 2)

160

y x x
x x

y

= −

= −

− − = − − −

= − −
= −

DDE, P
on

dic
he

rry
 U

niv
ers

ity



Notes

131

Solution:   

 (b) Given  . Then, 

Example:2 Find the derivative of  1( )
x

x

xef x
x e

−
=

+
.

Solution: Given  1( )
x

x

xef x
x e

−
=

+                         

Example:3  Find the derivative of 
3 2( ) x x xf x

x
−

= .

Solution:  Given 

3
3 3 22 2( ) x x x x xf x

x x
− −

= =

Example:4 Find the derivative of sec( )
1 tan

xf x
x

=
+

.

Solution: Given sec( )
1 tan

xf x
x

=
+

( ) ( ) ( )( )
( )2

2 2

0 .1 1 1
'( )

x x x x x

x

x x

x e xe e xe e
f x

x e

x e xe

 + − + − − + =
+

− −
=

xxe− 2 1x x xe e xe− − − + 2xxe+

( )
( )

( )

2

2 2

2

1

x

x x x

x

x e

x e e e

x e

+

− + + +
=

+

( )312 32 2

2

3 33 32 2

2

33 2

2

1
2

33 2. 2 .1
2'( )

3 3 2

2

'( ) 2

x x x x x
f x

x

x x x x
x

x x
x

f x x x
−

 − − − 
 =

− − +
=

−
=
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Example: 5 Find the derivative of  
Solution:

Given 
            

, where  and .

Example: 6 Find the derivative of 
Solution:

         Given 

Example: 7 Find the derivative of .

( ) ( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

2

2

2 3

2

2 2

2

2 2
2

2

1 tan sec tan sec sec
'( )

1 tan

sec tan sec tan sec
1 tan

sec tan sec tan sec

1 tan

sec tan sec 1
1 tan sec

1 tan

sec tan 1
'( )

1 tan

x x x x x
f x

x

x x x x x
x

x x x x x

x

x x x
x x

x

x x
f x

x

+ −
=

+

+ −
=

+

+ −
=

+

+ −
= + =

+

−
=

+
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Example: 5 Find the derivative of  
Solution:

Given 
            

, where  and .

Example: 6 Find the derivative of 
Solution:

         Given 

Example: 7 Find the derivative of .

( ) ( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

2

2

2 3

2

2 2

2

2 2
2

2

1 tan sec tan sec sec
'( )

1 tan

sec tan sec tan sec
1 tan

sec tan sec tan sec

1 tan

sec tan sec 1
1 tan sec

1 tan

sec tan 1
'( )

1 tan

x x x x x
f x

x

x x x x x
x

x x x x x

x

x x x
x x

x

x x
f x

x

+ −
=

+

+ −
=

+

+ −
=

+

+ −
= + =

+

−
=

+



Solution:  Given .

Differentiating with respect to ' 'x , we have

Example: 8 If 
2

,
1

xy
x

=
−

find .dy
dx

Solution:  Given 
2

,
1

xy
x

=
−

Differentiating with respect to ' 'x on both sides

Exercise Problems

1. Find '( )f x , if 
                 

2. Find if 

2

2

1

11 .1
2

dy d x
dx dx x

x x
dy
dx

 
=  

− 

− −
⇒ =

( )
1

2 21 2x
−

− −( )

( )2
21

x

x

  
  

  
 

− 
  

( )

2
2

2

2

1
1

1

xx
x

x

 
− + 

− =
 −
 
 

21 x−
=

2x+

( )

( )

2 2

2 2

1 1

1
1 1

x x

dy
dx x x

 
 
 − − 
 
 ∴ =
 − − DDE, P
on

dic
he

rry
 U

niv
ers

ity



Notes

134

3. If (sec tan )(sec tan )y x x x x= + − , find dy
dx

.

4. If , cot
1 cot

xy
x

=
+

, find dy
dx

.

5. If sin tany x x= , find dy
dx

.

Answers:

                   2. 

3. 0dy
dx

=   4.    
2

2

cos
(1 cot )

ec x
x

−
+

       5. 2sin sec sinx x x+

4.1.9 Implicit Differentiation

 Implicit differentiation is a powerful tool in calculus that is used to find 
the derivative of a function that is not written in explicit form. This technique 
involves differentiating both sides of an equation with respect to the variable

of interest, typically x, and then solving for dy
dx

, the derivative of y with respect 

to x.
 To apply implicit differentiation, we assume that y is a function of x, 
and we differentiate both sides of the equation with respect to x using the 
chain rule whenever we encounter a term involving y. For example, if we have 
the equation 2 2 25x y+ = , we will differentiate both sides with respect to x as 
follows:

2   2   0

  

dyx y
dx

dy x
dx y


+ = 




−



=

Thus, we have found the derivative of y with respect to x without having to 
solve for y explicitly. Implicit differentiation can be used to find the derivatives 
of more complex functions that are not easily differentiated using standard 
techniques. It is especially useful for finding the derivatives of functions that 
are defined implicitly, such as the equations of curves and surfaces in geometry.

2 3Example1: Find 10dy if x y xy
dx

− =

2 2( ) (25)d dx y
dx dx

+ =
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Solution:

Diffrentiating implicity with respect to x, you find that

Example 2:Find ' sin cosy if y x y= +

Diffrentiating implicity with respect to x, you find that

2 23 : ' ( 1,1) 3 1Example Find y at if x xy y− + + = −

Diffrentiating implicity with respect to x, you find that

At the point(-1,1),

Example 4:Find the slope of the tangent line to the curve 2 2 25x y+ = at the 
point (3,-4) Because the slope of the tangent line to a curve is the derivative , 
deiiferntiate implicity with respect to x,which yeilds

3 2 2

2 2 3

2 2 3

3

2 2

2 .3 . 1 .1. 0

3 2

(3 ) 2

2
3

dy dyxy x y y x
dx dx

dy dyx y x y xy
dx dx

dyx y x y xy
dx
dy y xy
dx x y x

+ − − =

− = −

− = −

−
=

−

1. ' cos sin . '
1. ' sin . ' cos

'(1 sin ) cos
cos'

1 sin

y x y y
y y y x
y y x

xy
y

= −
+ =

+ =

=
+

2 3 3 . ' 2 . ' 0
. ' 2 . ' 2 3
'(3 2 ) 2 3

2 3'
(3 2 )

x y x y y y
x y y y x y
y x y x y

x yy
x y

+ + + =
+ = − −

+ = − −
− −

=
+

( 2)( 1) 3(1)'
3( 1) 2(1)
1
1
1

y − − −
=

− +
−

=
−

= −

2 2 . ' 0
2 . ' 2

2'
2

x y y
y y x

xy
y
x

y

+ =
= −

−
=

−
=

2 2 . ' 0
2 . ' 2

2'
2

x y y
y y x

xy
y
x

y

+ =
= −

−
=

−
=
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Hence , at (3,-4),  3 3'
4 4

y −
= =

−
 , and the tangent line has slope 3

4
at the 

point(3,-4)

EXCERSISE: 
1) Find the implicit derivative y' if the function is defined as x + ay2 = sin y,   
     where 'a' is a constant.

2)  Find the second implicit derivative if x2 + y2 = 4.

3) Find the implicit derivative dy
dx

when x2 + 3xy + y2 = -1.

4)differentiate each of the following with respect to x and find dy
dx

( ) ( ) ( )

( )

Example 5:  Find  by implicit differentiation: 3   2    .

:

The given equation is,

3   2    

Differentiating both sides with respect to x :

2
    

1   2  

3

 

dy
x y cos y

dx

x y cos y

d d
x y cos y

dx dx

s

d

dx
dy

sx

+ =

+ =

+ =

+ = − 
 
 

Solution

( )

( )

( )

  

2       3

 2     3

3
  

2   

3
: The implicit derivative,   .

2   

dy
in y

dx
dy

sin y
dx

dy
sin y

dx
dy

dx

x

sin

d

y

dy

dx sin

dy

y

− − =

− + =

= −
+

= −
+

 
 
 

Answer

2

2 2 3

2 3

2
2 5 3

2

)sin 4 cos
)3 cos 2 5
)5 sin 5 10

) cos 3 4

) tan 5 sin 3 9

a y x y x
b xy y x
c x x y xy

yd x x x x
x

e y y x xy

+ + =

+ = +

− + =

− + + =

− + =
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ANSWERS:
1. y' = 1/(cos y - 2ay).

2. The second implicit derivative is, y'' = [-y2 - x2]/y3.

3. The implicit derivative dy/dx when x2 + 3xy + y2 = -1 is –(2x+3y)/
(3x+2y)

4. 

 

    

4.1.10 Higher Order Derivatives

 A higher order derivative of a function is a derivative that has been 
taken multiple times. Specifically, the nth derivative of a function f(x) is 
obtained by differentiating f(x) n times with respect to x. The nth derivative is 
denoted by ( ) ( )( )n nf x or y , where the superscript "n" indicates the order of the 
derivative.

For example, suppose f(x) = 3 2x x− . The first derivative of f(x) is f '(x) 23 2x= −

, and the second derivative is f ''(x) = 6x. The third derivative is f '''(x) = 6, and 
the fourth derivative is f ''''(x) = 0.

 Higher order derivatives can provide important information about the 
behavior of a function. For example, the second derivative can tell us about 
the concavity of a function and whether it is increasing or decreasing, while 
the third derivative can provide information about inflection points.

 However, as the order of the derivative increases, the computation and 
interpretation of the derivative can become increasingly difficult, especially 
for more complex functions. Additionally, higher order derivatives may not 
be needed or relevant for many applications.

Example 1: Find the first, second and third derivatives of     

4 3 2( ) 5 3 7 9 2f x x x x x= − + − +

2 2

2

2

3

sin 2)
4 cos
6 3)

6 2 sin
10 3 sin 5)

cos 5

dy x xa
dx y
dy x yb
dx xy y y
dy x x x yc
dx x y x

− −
=

+

−
=

−

− +
=

−
4 6 2 3 2 2

2

2

12 15 2 sin)
2

cos 3)
5sec 5 sin 6

dy x x y x x xd
dx xy
dy y x ye
dx y x xy

− + − −
=

−
=

− +
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Example 2: Find the first, second and third derivatives of 2siny x=

(3)Example3:Find (4) ( )f if f x x=

Solution:

4.1.11 Concavity and Convexity of the Function

 Concave on an interval if, for any two points 1 2 and x x within that 
interval and any value of t between 0 and 1, the following inequality holds:

                   ( )( ) ( ) ( ) ( )1 2 1 2  1     1 .f tx t x tf x t f x+ − ≥ + −  

In other words, the line segment connecting any two points on the graph of 
the function lies below the graph of the function itself.

Convex on an interval if, for any two points 1 2 and x x within that interval and 
any value of t between 0 and 1, the following inequality holds: 

                      ( )( ) ( ) ( ) ( )1 2 1 2  1     1 .f tx t x tf x t f x+ − ≤ + −

 In other words, the line segment connecting any two points on the graph of 
the function lies above the graph of the function itself.

3 2

(2) 2

(3)

'( ) 20 9 14 9
''( ) ( ) 60 18 14
'''( ) ( ) 120 18

f x x x x
f x f x x x
f x f x x

= − + −

= = + −

= = −

2 2

' 2sin cos
'' 2cos cos 2sin ( sin )

2cos 2sin
''' 2.2cos ( sin ) 2.2sin cos

4sin cos 4sin
8sin cos

y x x
y x x x x

x x
y x x x x

x x xcox
x x

=
= + −

= −
= − −
= − −
= −

1
2

1
2

3
2

5
2

Because ( )

1'( )
2
1''( )
4
3'''( )
8

f x x x

f x x

f x x

f x x

−

−

−

= =

=

=

=

5
23hence, '''(4) (4)

8
3 1
8 32

3
256

f
−

=

 =  
 

=

DDE, P
on

dic
he

rry
 U

niv
ers

ity



Notes

139

Find the Intervals of Concavity and Convexity for the Functions

Example 1: 3( ) 3f x x x= −

Solution:

Example 2: 4 2( ) 2 8f x x x= − −

Solution:

3 3: ( , ) ( , )
3 3

3 3: ( , )
3 3

concave

convex

−∞ − ∞

−



Example 3: 3

2( )
( 1)

xf x
x

=
−

3

2( )
( 1)

xf x
x

=
−

.

Solution:

: (0,1) (1, )
: ( ,0)

convex
concave

∞
−∞


Example 4:
4

2

1( ) xf x
x
+

= .

3( ) 3
''( ) 6
6 0

0
: ( ,0)
: (0, )

f x x x
f x x

x
x

convex
concave

= −
= −

− =
=

−∞
∞

4 2

2

2

( ) 2 8
''( ) 12 4

12 4 0

1 3
33

f x x x
f x x

x

x

= − −

= −

− =

= ± =

3

2

3 2

3

4

4

( )
( 1)

3'( )
( 1)

6''( )
( 1)

6 0
( 1)

xf x
x
x xf x

x
xf x

x
x

x

=
−

−
=

−

=
−

= =
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Solution:

: ( ,0) (0, )convex −∞ ∞

Example 5:
2

( )
2

xf x
x

=
−

Solution:

No solution

: ( , 2)
: (2, )

convex
concave

−∞
∞

Example 6: 2( )
1

xf x
x

=
+

.

Solution:

: ( 3,0) ( 3, )

: ( , 3) (0, 3)

convex

concave

− ∞

−∞ −





4

2

4

3

4

4

4

4

1( )

2( 1)'( )

2( 3)''( )

2( 3) 0

3

xf x
x

xf x
x
xf x
x

x

x

+
=

+
=

+
=

+ =

= −

2

2

2

3

3

( )
2
4'( )
(2 )

8''( )
(2 )

8 0
(2 )

xf x
x

x xf x
x

f x
x

x

=
−

−
=

−

=
−

=
−

2

2

2 2

3

2 3

3

2 3

( )
1

1'( )
(1 )
2 6''( )
(1 )

2 6 0
(1 )

0

3

xf x
x

xf x
x

x xf x
x

x x
x

x

x

=
+

−
=

+

−
=

+

−
=

+
=

= ±
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EXCERCISE:

Find the Intervals of Concavity and Convexity for the Functions

SOLUTION:

4.1.12 Self Assessment Questions

1.Differentiate ( )1003 1y x= − . 

  2 3 99Ans:300x ( 1)x − 

2.Find the derivative 1 cos sintan
cos sin

x x
x x

− + 
 − 

.

   [Ans: 1]

3.Differentiate ( ) ( )45 32 1 1x x x+ − + .

   [Ans: ( )4 3 3 3 22(2 1) ( 1) 17 6 9 3x x x x x x+ − + + − + ]

4.Find 
4 2 3 5 2 1x x y y x+ − = +

if 4 2 3 5 2 1x x y y x+ − = + . 

    
3 3

2 2 4

2 4 2Ans:
3 5

dy x xy
dx x y y

 − −
= − 

   

2

2

1

1
2

1) ( )

2) ( )

3) ( )
4) ( ) ( 1)

15) ( )
2 2

x

x

x

x

f x x x

f x e

f x e
f x x e

f x e
π

−

−

−

= +

=

=

= −

=

1)Concave:(0, )

2 22)Convex:( , ) ( , )
2 2

2 2   Concave:( , )
2 2

13)Convex:( ,0) (0, )
2

1   Concave:( , )
2

4)Convex:(3, )
Concave:( ,3)

5)Convex:( , 1) (1, )
Concave:( 1,1)

∞

−∞ − ∞

−

− ∞

−∞ −

∞
−∞

−∞ − ∞
−
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5. Find the Intervals of Concavity and Convexity for the Functions 

ln( ) xf x
x

=

  
3 3
2 2Ans:Convex:( , ) & Concave:( 0, )e e

 
∞ − 

 

4.1.13 Summary 

1.Derivatives of Polynomials and Exponential Functions

 , for any real value of .

,  

where b  is a positive real number.

,  

2.The product rule: , 

where  and g are differentiable functions.

3.Derivative of inverse trigonometric functionsDDE, P
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4.The Quotient rule: , 

where  and g are differentiable functions.

5.Concavity and convexity of the function
  ➢ Concave on an interval if, for any two points 1 2 and x x within that 

interval and any value of t between 0 and 1, the following inequality 
holds:

( )( ) ( ) ( ) ( )1 2 1 2  1     1 .f tx t x tf x t f x+ − ≥ + −

In other words, the line segment connecting any two points on the graph of 
the function lies below the graph of the function itself.

  ➢ Convex on an interval if, for any two points 1 2 and x x within that 
interval and any value of t between 0 and 1, the following inequality 
holds: 

( )( ) ( ) ( ) ( )1 2 1 2  1     1 .f tx t x tf x t f x+ − ≤ + −

In other words, the line segment connecting any two points on the graph of 
the function lies above the graph of the function itself.
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UNIT- V

Lesson 5.1 - Introduction to Integration

Structure 

5.1.1Objective

5.1.2 introduction:

5.1.3 indefinite integrals:

5.1.4 integration by substitution:

5.1.5 integration by parts

5.1.6 properties of definite integral:

5.1.7 Self Assesment questions:

5.1.8 Summary

5.1.1Objectives

  ➢ Recall the definition of integration and its relation to differentiation.

  ➢ Evaluate the validity of a given mathematical statement about 
definite integrals.

5.1.2 Introduction

 Integral Calculus provides powerful tools for modelling physical 
problems which involve continuously varying quantities. Intuitively, 
integration is summing up the incremental changes a quantity undergoes 
ultimately and tells how much the quantity changes in the long term. There 
is a connection between integral calculus and differential calculus. The 
Fundamental Theorem of Calculus relates the integral to the derivative, and 
we will see in this unit that it greatly simplifies the solution of many problems.

 In many situations, the information about a function's derivative is 
not sufficient to trace back the curves. We need to find the function itself 
known as primitive or anti-derivative. For example, a physicist who knows 
the velocity of a particle might wish to know its position at a given time. 
An engineer who can measure the variable rate at which water leaks from 
a tank wants to know the amount leaked over a certain period. A biologist 
who knows the rate at which a bacteria population is increasing might 
want to deduce what the population’s size future time. In each case, the 
problem is to find a function F  whose derivative is a known function F. If 
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such a function F exists, it is called an anti-derivative. That is obtained by 
the concept of what is known as integration.

The development of integral calculus arises out of the efforts of solving the 
problems of the following types:

1. The problem of finding a function whenever its derivative is given,
2. The problem of finding the area bounded by the graph of a function 
under certain conditions.

These two problems lead to the two forms of integrals namely indefinite 
and definite integrals, which together constitute the Integral Calculus.

5.2 Indefinite integrals:

 An indefinite integral is an antiderivative of a function. Given 
a function f(x), an indefinite integral of f(x) is a function F(x) whose 
derivative is f(x).

 The indefinite integral of a function f(x) is denoted by ∫ f(x) dx, 
where the symbol ∫ represents integration, f(x) is the integrand, and 
dx indicates the variable with respect to which the integration is being 
performed.

To find the indefinite integral of a function, we need to use integration 
rules and techniques, such as:

1. Power rule: 
( 1)( )

( 1)

n
n xx dx C

n

+

= +
+∫ , where C is the constant of 

integration.

2. Integration by substitution: ∫ f(g(x)) g'(x) dx = ∫ f(u) du, where u = 

g(x) and 
dv
dx =g'(x)

3. Integration by parts: ∫ u dv = uv - ∫ v du, where u and v are functions 

of x and du/dx and dv
dx

are their derivatives.

4. Trigonometric substitutions: These are used to evaluate integrals 
that involve trigonometric functions.

5. Partial fraction decomposition: This technique is used to simplify 
the integration of rational functions.
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 It is important to note that the indefinite integral of a function 
is not unique, as it can differ by a constant of integration. Therefore, we 
usually add the constant of integration (C) to the solution of an indefinite 
integral.
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5.2 Integration by Substitution

 If the integral is of the form ( ){ } ( )'F f x f x dx⋅∫ , where ( )f x  is 

an elementary/standard function, the integral can be reduced to a simpler 

integrable form by putting ( )y f x=  so that ( )' .dy f x dx= . The integral gets 

reduced to the form ( ) ,F y dy∫  which can be done by known methods or by 

using standard formulas.

Note: The following two particular cases of ( ){ } ( )'F f x f x dx∫  are of 

importance, as they will be used in integrating some rational and irrational 

functions.

                         ( ) ( )
( ) ( )

'

. log log
f x dyi dx y f x
f x y

→ = →∫ ∫
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( ) ( )

( )
( )

'

. 2 2
f x dyii dx y f x

yf x
→ = →∫ ∫

Example1: Evaluate ( )3 4cos 2x x dx+∫

Solution: Let ( )4 42 2x u x u+ = ⇒ = −
  34x dx du=

  3

4
dux dx =

  Now, ( )3 4 1cos 2 cos cos
4 4

dux x dx u udu+ = =∫ ∫ ∫

     
( )4

1 sin
4
1 sin 2
4

u C

x C

= +

= + +

Example2: Evaluate 
21 4

x dx
x−

∫

Solution: Let  

8

8

xdx du
duxdx

− =
−

=

          

8

8

xdx du
duxdx

− =
−

=

2

1
81 4

x dudx
ux

− =  
 −

∫ ∫

    
( )

2

1 2
8

1 4
4

u C

x C

−
= +

− −
= +

Example 3: Evaluate 
( )( )

1
1 1x x

dx
e e−+ +∫

Solution: Let
( )( ) ( )

1 1
11 1 1 1

x x
x

x

dx dx
e e e

e

−
=

 + + + + 
 

∫ ∫
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( )( )

( )2

1 1

1

x

x x

x

x

e dx
e e

e dx
e

=
+ +

=
+

∫

∫

   Put 1 1x xe u e u+ = ⇒ = −

     xe dx du=

   ( )2 2
1

1

x

x

e dx du
ue

=
+

∫ ∫

Example 4: Evaluate 1
1 tan

dx
x+∫

Solution:  Let 1 1
sin1 tan 1
cos

dx dxxx
x

=
+ +

∫ ∫
   
   
      

2

1

1
1

1
1 x

u du

u C

C
u

C
e

−

−

=

 
= + − 

−
= +

−
= +

+

∫
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121

1 0
0

log 1 10
2 2 2

e x udx udu
x

 
= = = − = 

 
∫ ∫
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⇒ 24
dyI

y
=

+∫
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5.3 Integration by Parts

Every differentiation rule has a corresponding integration rule. For instance, 
the Substitution Rule for integration corresponds to the Chain Rule for 
differentiation. The rule that corresponds to the Product Rule for differentiation 
is called the rule for integration by parts.

The Product Rule states that if f and g are differentiable functions, then

I   -   Inverse circular function

L  -   Logarithmic function

A  -   Algebraic function

T   -   Trigonometric function

E   -   Exponential function

Example:1 Find sin .x x dxò
Solution:  Here direct and substitution methods are not applicable.

; sin ; sin cosu x dv x dx du dx v x dx v x= = Þ = = Þ = -ò
Using Integration by parts 

sin ( cos ) ( cos )u dv u v v du x x dx x x x dx= - Þ = - - -ò ò ò ò
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cos cos cos sinx x x dx x x x c= - + = - + +ò

Example: 2 Find log x dxò
Solution:  Here direct and substitution methods are not applicable.

1log ; ;u x dv dx du dx v dx v x
x

= = Þ = = Þ =ò
Using Integration by parts 

Example:3 Calculate
1

1

0
tan x dx-ò .

Solution:  Here direct and substitution methods are not applicable.

1
2

1tan ; ;
1

u x dv dx du dx v dx v x
x

-= = Þ = = Þ =
+ ò

Using Integration by parts 

To evaluate this    
1

1 20 1
xI dx
x

=
+ò       by using substitution method 

21 ; 2 (or) 
2

When 0 ; 1; and 1 ; 2;

dtt x dt x dx x dx

x t x t

= + = =

= = = =

Example:4 Evaluate .xxe dx∫
Solution:  Let xI xe dx= ∫
 Take  ,u x=   

∴ ,du dx=  x xv e dx e= =∫
∴ x x x xI xe e dx xe e c= − ⋅ = − +∫

( )1 111 1
200 0

1
1 1

20

tan tan
1

                                                            1. tan (1) 0 tan (0)
1

                                                             

xu dv u v v du x dx x x dx
x

x dx
x

p

- -

- -

= - Þ = -
+

= - -
+

=

ò ò ò ò

ò
1

1 1 20
0 where 

4 1
xI I dx
x

æ ö÷ç- - = ÷ç ÷çè ø+ò

[ ]

[ ]

1 2 2
1 2 10 1

1
1

0

1 1 log
1 2 2

1 1   log 2 log1 log 2
2 2

1tan log 2
4 2

x dtI dx t
x t

x dx p-

= = =
+

= - =

\ = -

ò ò

ò

xdv e dx=
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Example: 5 Evaluate sin .xe xdx∫
Solution:  Let  sin .xI e xdx= ∫
Take  sin ,u x=    (according to ILATE)
∴ cos ,du xdx=      xv e=

∴ sin cosx xI x e e xdx= ⋅ − ∫
Now take  xdv e dx=

  sin ,du xdx= − xv e=

∴ sin cos . ( sin )x x xI e x x e e x dx = − − − ∫
 

 

∴ 2 sin cosx xI e x e x= −

      (sin cos )
2

xeI x x c= − +

Example:6 Evaluate sin .x dx∫

Solution:  Let  

     (1 cos 2 )
2

xx dx−
= ∫

     

1 1 cos 2
2 2

xdx x xdx= −∫ ∫

     
2 1 sin 2 sin 2

4 2 2 2
x x xx dx = − −  ∫

      

2 1 cos 2sin 2
4 4 2
x xx x c = − + +  

    

2 1sin 2 cos 2
4 4 8
x x x x c= − − +

Example:7 Evaluate  2sin .x dx∫

Solution:  Let 1tan .I x xdx−= ∫
  

[according to ILATE]

 Take  1tan ,u x−=   dv dx=

2

1 ,
1

du dx
x

=
+  

2

2
xv xdx= =∫

cos ,u x=

sin cos sinx x xe x e x e xdx= − − ∫
sin cosx xe x e x I= − −

xdv e dx=

2sin .I x dx= ∫
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2 2
1

2

1tan
2 2 1
x xI x dx

x
−= ⋅ − ⋅

+∫

Example: 8 Evaluate 
23

2 2( 1)

xx e dx
x +∫

Solution:  Let 
23

2 2( 1)
x eI dx

x
=

+∫
 

Put 2t x=  12
2

dt xdx dt xdx∴ = ⇒ =   
  

∴ 
22

2 2( 1)

xx xe dxI
x
⋅

=
+∫

    
2

1
2

( 1)

tte dt

t
=

+∫

    
2

1
2 ( 1)

tte dt
t

=
+∫

    
2

1 [ 1 1]
2 ( 1)

t te dt
t
+ −

=
+∫

    2

1 1 1'
2 1 ( 1)

e dt
t t

 
= − + + 

∫

If  1( ) ,
1

f t
t

=
+

 then  2

1'( )
( 1)

f t
t

= −
+

1 '[ ( ) '( )]
2

I e f t f t dt= +∫
 1 '[ ( ) '( )]

2
I e f t f t dt= +∫

    

1 ( )
2

te f t c= + [ ( ( ) '( )) ( ) ]x xe f x f x dx e f x c+ = +∫Q

    

2

2

1 1
2 1

xe c
x

= ⋅ +
+

Example: 9 Evaluate 2 2cos [ cos ]
axax ee bxdx a bx bsinbx

a b
= +

+∫   
 
Solution:  Let cosaxI e bxdx= ∫   (1) 

Taking  ,axu e=  ' axu ae=

And    cos ,v bx=
 

1
sincos bxv vdx bxdx

b
= = =∫ ∫
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 1 1'I uv u v dx= − ∫

   sin sinax axbx bxe ae dx
b b

= − ∫

   

sin cos cosax ax axbx a bx bxe e ae dx
b b b b

    = − − − −        
∫

[Again integration by parts]

   

2

2 2

sin cos cos
ax

ax axe bx a ae bx e bxdx
b b b

= + − ∫

   

2

2 2

sin cos
ax

axe bx a ae bx I
b b b

= + −

 

2

2 2

11 [ sin cos ]ax axa I be bx ae bx
b b

 
⇒ + = + 

 

 

2 2

2 2 [ cos sin ]
axa b eI a bx b bx

b b
 +

⇒ = + 
 

2 2( ) [ cos sin ]axa b I e a bx b bx+ = +

   
2 2 [ cos sin ]

axeI a bx b bx
a b

= +
+

∴ 2 2cos [ cos sin ]
ax

ax ee bxdx a bx b bx
a b

= +
+∫

. .,i e 2 2cos [ cos (cos )]
ax

ax e de bxdx a bx bx
a b dx

= −
+∫

Example:10  Evaluate  2 2sin [ sin cos ]
axax ee bxdx a bx b bx

a b
= −

+∫

Solution:  To prove 2 2sin [ sin cos ]
axax ee bxdx a bx b bx

a b
= −

+∫
Let sinaxI e bxdx= ∫  

And   cos ,v bx=
 

1
sincos bxv vdx bxdx

b
= = =∫ ∫

1 1'I uv u v dx= − ∫
 1 1'I uv u v dx= − ∫

 sin sinax axbx bxe ae dx
b b

= − ∫

 

sin cos cosax ax axbx a bx bxe e ae dx
b b b b

    = − − − −        
∫    
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 [Again integration by parts]

 

2

2 2

sin cos cos
ax

ax axe bx a ae bx e bxdx
b b b

= + − ∫

 

2

2 2

sin cos
ax

axe bx a ae bx I
b b b

= + −

  

 

          
2 2( ) [ cos sin ]axa b I e a bx b bx+ = +

         ∴ 2 2cos [ cos sin ]
ax

ax ee bxdx a bx b bx
a b

= +
+∫

2 2cos [ cos (cos )]
ax

ax e de bxdx a bx bx
a b dx

= −
+∫ 2 2cos [ cos (cos )]

ax
ax e de bxdx a bx bx

a b dx
= −

+∫

Exercise: 

( )
2

24

1

1. x Inx dx∫      

( )223. 1xe x dx+∫
2 34. sin(3 1)xe x dx+ +∫   25. xx e dx∫                          

      

1 sin6.
1 cos

x xe dx
x

+ 
 + ∫  

2

2 2

11 [ sin cos ]ax axa I be bx ae bx
b b

 
⇒ + = + 

 
2 2

2 2 [ cos sin ]
axa b eI a bx b bx

b b
 +

⇒ = + 
 

2 2 [ cos sin ]
axeI a bx b bx

a b
= +

+

2. cosh 3 cos 4x xdx∫
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5.4 Area Under the Curve

 The area under a curve can be expressed using definite integration. 
If we have a function y = f(x) and we want to find the area under the curve 
between two x values, say x = a and x = b, we can use the definite integral:

             A = ∫[a,b] f(x) dx

 Here, the symbol ∫ represents the integral sign, and [a,b] indicates that 
we are integrating with respect to x from a to b. The result of this integration 
gives us the area under the curve between x = a and x = b.

Example 1

Using integration, find the area of the region bounded between the line x = 2 
and the parabola y² = 8x. 
Solution: 
From the question it is given that two equations,

   
2

2 ( )
8 ( )

x i
y x ii

= − − − − − − − −

= − − − − − − −
 

So, equation (i) represents a line parallel to -axis and equation (ii) represents 
a parabola with vertex at origin and -axis as it axis, is as shown in the rough 
sketch below,

  

Now, we have to find the area of OCBO, Then, the area can be found by 

taking a small slice in each region of width , And length = (y-0)=y

The area of sliced part will be as it is a rectangle =  

So, this rectangle can move horizontal from x=0 to x=2 

The required area of the region bounded between the lines = Region OCBO
 
                                    = 2 (region OABO) = 

2

0

2 ydx∫
   Given, 
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2 2

0 0
2

3
22

0

0

8 2 8 2 2 2

24 2 4 23 3
2

2 24 2 2 2 0 0
3 3

4 2 324 2
3 3

32Therefore, the required area square =  units.
3

y x xdx xdx

x x x

= = = ⋅

 
   = =     
 

       = −              
 

= =  
 

∫ ∫

 
Example 2:

Using integration, find the area of the region bounded by the line y - 1 = x, 

the x-axis and the ordinates x= -2 and x = 3. 

Solution: 

From the question it is given that equation y - 1 = x -----------(i)

So, equation (i) represents a line that meets at  and , is as shown 

in the rough sketch below,

Now, we have to find the area of the region bounded by the line y-1=x

So, Required area = Region ABCA + Region ADEA

3 1

1 2
3 1

1 2
3 12 2

1 2

2 2 2 2

A=

( 1) ( 1)

2 2

3 ( 1) ( 1) ( 2)3 ( 1) ( 1) ( 2)
2 2 2 2

15 1 1 18
2 2 2 2

17A= square uni
2

ydx ydx

x dx x dx

x xx x

−

− −

−

− −

−

− −

+

= + + +

   
= + + +   

   

          − − −
= + − + − + + − − + −          

          
    = + + − = +        

∫ ∫

∫ ∫

ts
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2 2

0 0
2

3
22

0

0

8 2 8 2 2 2

24 2 4 23 3
2

2 24 2 2 2 0 0
3 3

4 2 324 2
3 3

32Therefore, the required area square =  units.
3

y x xdx xdx

x x x

= = = ⋅

 
   = =     
 

       = −              
 

= =  
 

∫ ∫

 
Example 2:

Using integration, find the area of the region bounded by the line y - 1 = x, 

the x-axis and the ordinates x= -2 and x = 3. 

Solution: 

From the question it is given that equation y - 1 = x -----------(i)

So, equation (i) represents a line that meets at  and , is as shown 

in the rough sketch below,

Now, we have to find the area of the region bounded by the line y-1=x

So, Required area = Region ABCA + Region ADEA

3 1

1 2
3 1

1 2
3 12 2

1 2

2 2 2 2

A=

( 1) ( 1)

2 2

3 ( 1) ( 1) ( 2)3 ( 1) ( 1) ( 2)
2 2 2 2

15 1 1 18
2 2 2 2

17A= square uni
2

ydx ydx

x dx x dx

x xx x

−

− −

−

− −

−

− −

+

= + + +

   
= + + +   

   

          − − −
= + − + − + + − − + −          

          
    = + + − = +        

∫ ∫

∫ ∫

ts

Example 3

Find the area lying above the x-axis and under the parabola y = 4x - x². 

Solution: 

From the question it is given that equation,

Adding 4 on both side,

Transposing we get,

We know that, 

So, equation (i) represents a downward parabola with vertex  and 
passing th  and , is as shown in the rough sketch below,
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Then, the area can be found by taking a small slice in each region of width 
,Then, the area can be found by taking a small slice in each region of width 

, And length=(y-0)=y 

The area of sliced part will be as it is a rectangle  = y  

So, this rectangle can move horizontal from x=0 to x=a 

The required area of the region bounded between the lines = Region OABO 

Required area     

On integrating we get,

Now we have to apply limits,

    = [((4x16)/2 - (64/3)] - [0-0]

On simplification we get,

   = 64/6 

Divide both numerator and denominator by 2 we get,
   = 32/3 
Therefore, the required area is  square units.

Example 4 
Find the area of the region bounded by x ^ 2 = 16y, y = 1, y = 4  and the 

y-axis in the first quadrant. 

Solution: 

From the question it is given that, Region in first quadrant bounded by y=1, 

y=4 

Parabola -------------------------(i) 

So, equation (i) represents a parabola with vertex  and axis as  - axis, as 

sho the rough sketch below,DDE, P
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Now, we have to find the area of ABCDA, 

Then, the area can be found by taking a small slice in each region of width 

, And length =x 

The area of sliced part will be as it is a rectangle = x 

So, this rectangle can move horizontal from y=1 to x=4 

The required area of the region bounded between the lines = Region 

                

        Given, 

        Given, 

On integrating we get,
Now, applying limits we get,

Therefore, the required area is  square units.

Example 5 

Find the area of the region bounded by 2 16 0x y+ =  and its latus rectum.

Solution: 
We have to find the area of the region bounded by DDE, P

on
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Then, Area of the region 

                  
On integrating we get,

               

Now applying limits,

             

Therefore, the area of the region is  square units.

EXERCISE:
 
Find the area of the region bounded 

1.  and x=2 

2.  and  

3.  and  

4.  and  

5.  and the -axis. 

6.  and  

7.  

8.  and  

9.  and 

Answers:

1. 8.0435        2. 6.4548           3. 9  
4. 343/6  5. 17.17097                6. 343/12
7. 7.9695  8. 46/3                 9. 22.9983
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5.5 Properties of Definite Integral:

If ( )f x  is continuous and integrable function of x in [ , ]a b , then the 
following properties are true.

1. ( ) ( )
a b

b a

f x dx f x dx= −∫ ∫

2. 

3. ( ) ( )
b b

a a

f x dx f a b x dx= + −∫ ∫
 

4. 
0 0

( ) ( ) .
a a

f x dx f a x dx= −∫ ∫

5. If
0

( ) 2 ( )
a a

a

f x dx f x dx
−

=∫ ∫ , ( )f x  is an even function of ( ) 0
a

a

f x dx
−

=∫  and ( ) 0
a

a

f x dx
−

=∫  

if  ( )f x  is an       odd function of x

6.   
2

0 0

( ) 2 ( )
a a

f x dx f x dx=∫ ∫
 
if (2 ) ( )f a x f x− =  and 

2

0

ü
a

f x dx =∫

 if (2 ) ( )f a x f x− = −

Note:

Example 1: Evaluate 
2 2

21

13 .x x dx
x

 − + 
 ∫

Solution: 

2

33 22 2
21

1

1 13 3 33
2

x xx x dx
x x

 
  − + = − −  

   
 

∫
         

[ ]

( )

1) ( ) 0

2) ( ) ( ) ( ) ( )

3)

4) ( ) ( )

a

a
b b b

a a a
b

a
b b

a a

f x dx

f x g x dx f x dx g x dx

cdx c b a

cf x dx c f x dx

=

± = ±

= −

=

∫
∫ ∫ ∫
∫
∫ ∫
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( )8 1 12 2 2 3
3 2 3

7 1 1 3 4 2.
3 2 3
29 4 2
6

    = − − − −        

= − − + −

= −

Example 2: Evaluate 
6 2

0
cos

2
x dx

π  
 
 ∫

Solution:
6 62

0 0

1 cos 2( 2)cos
2 2
x xdx dx

π π +   =   
   ∫ ∫

                                            
( )

[ ]

6

0

6
0

1 1 cos
2
1 sin
2

x dx

x x

π

π

= +

= +

∫

                                            ( )( )sin 0 sin 0
2 6 6

π π   = + − +   
   

                                             1 1
2 6 2

π = +  

Example 3: If 
8

0
( ) 12,f x dx =∫  and 

8

0
( ) 12,f x dx =∫  find

10

8
( )f x dx∫

Solution: By property,

               

Example 4:  

Solution:

         

     let. . As we know that 

 

Now by using the above formula we get

8 10 10

0 8 0
10 10 8

8 0 0

( ) ( ) ( )

( ) ( ) ( ) 17 12 5

f x dx f x dx f x dx

f x dx f x dx f x dx

+ =

= − = − =

∫ ∫ ∫
∫ ∫ ∫
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Here by allied angle formula, we get

 

Adding (1) and (2), we get

 

The above equation can be written as

 
 

By using trigonometric identities, we get

 

Here, if  and 

By using trigonometric equation, we get

          

Adding (1) and (2), we get
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Now by adding and subtracting log 2 we get

 

The above equation can be written as

 

Now by splitting the integral we get

 

Let 

When  and when 

Example 5 :  

Solution: 

Given: 

let,          As we know that

 

By using the above formula, we get
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Adding (1) and (2), we get

  

The above equation becomes,

                  

On integrating we get

         

Now by applying the limits

            

 Example 6:  

Solution: 

Given:
As we can see that  when  and  when 

 
As we know that

 

By substituting the above formula, we get

 

On integration

 

Now by applying the limit we get

Exercise: 
   

( )
4

2

0

(1). 5 2 3t t dt− +∫   ( )
2

2

1

(2). 1 2ü+∫   

DDE, P
on

dic
he

rry
 U

niv
ers

ity



Notes

176

4
2

0

(3). sec ü

π

∫
                   

 
Self Assesment Questions:

(1) Evaluate ( ) [ ]
2

tan 2cot Ans : tan 4cot 9x x dx x x x C− − − +∫       
 

(2) Evaluate
1 1

2
tan tan

2

1 [Ans: ]
1

x xx xe dx xe C
x

− − + +
+ + 

∫  

(3) Evaluate ( )
3

32 2 2

ü Ans:
1 3 2 (1 )

x
xe x x xdx e c

x x

 + +
+ 

+  + 
∫

(4) Find the area bounded by            

[ ]ü , , 2and 1 Ans : 22.9978y yx e x e y y+ −= = = − =

(5) Evaluate 
4

0

ü Ans : log9
(9 16 2 ) 4
sin x cos x dx

sin x

π

+  
 +  ∫

Summary

  ➢ Integrals are mathematical tools used to find the area under a curve 
or the total accumulation of a function over a given interval. They are 
closely related to derivatives, which measure the rate of change of a 
function.

  ➢ There are two types of integrals: definite and indefinite. Definite 
integrals have specific limits of integration and give a single numerical 
value as a result. Indefinite integrals do not have limits and give a 
general formula for the antiderivative of a function.

  ➢ The process of finding integrals involves various techniques such as 
substitution, integration by parts, trigonometric substitution, partial 

2 5 6

4
1

3(4). v v dv
v
−

∫
2

üü
ü

x sinxe dx
cosx

π

π

−
−∫

4

4 4
0

( )(6).
( )

sin x cos x dx
cos x sin x

π

+∫
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fraction decomposition, and others. There are also special functions, 
such as the Gamma function and the Beta function, which play a 
crucial role in the evaluation of certain integrals.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15
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17

18

19

20

DDE, P
on

dic
he

rry
 U

niv
ers

ity



Notes

178

  ➢ Integration by Substitution:

                  

( )
( ) ( )

'

log log
f x dydx y f x
f x y

→ = →∫ ∫

  ➢ Integration by Parts

    ( ) '( ) ( ) ( ) ( ) '( )f x g x dx f x g x g x f x dx= -ò ò
  ➢ Area Under the Curve

The area under a curve can be expressed using definite integration. 
If we have a function y = f(x) and we want to find the area under the 
curve between two x values, say x = a and x = b, we can use the definite 
integral:

  A = ∫[a,b] f(x) dx

  ➢ Properties of Definite Integral:

     If ( )f x  is continuous and integrable function of x in üa b , then the 

following  properties are true.

1. ( ) ( )
a b

b a

f x dx f x dx= −∫ ∫

2. ( ) ( ) ( ) ;
ü

ü

f x dx f x dx f x dx a c b= + < <∫ ∫ ∫

3. ( ) 2 ( )
a a

a

f x dx f x dx
−

=∫ ∫
 

4. 
0

( ) 2 ( )
a a

a

f x dx f x dx
−

=∫ ∫

5. If
0

( ) 2 ( )
a a

a

f x dx f x dx
−

=∫ ∫ , ( )f x  is an even function of x  and ü
a

a

f x dx
−

=∫   

    if  ( )f x  is  an   odd function of x

6.   
2

0 0

( ) 2 ( )
a a

f x dx f x dx=∫ ∫
 
if (2 ) ( )f a x f x− =  and 

2

0

ü
a

f x dx =∫  if    

     (2 ) ( )f a x f xℵ
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[ ]

( )

1) ( ) 0

2) ( ) ( ) ( ) ( )

3)

4) ( ) ( )

a

a
ü

ü
b

a
b b

a a

f x dx

f x g x dx f x dx g x dx

cdx c b a

cf x dx c f x dx

=

± = ±

= −

=

∫
∫ ∫ ∫
∫
∫ ∫

Note:
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